Search Results (9686 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2021-46917 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: dmaengine: idxd: fix wq cleanup of WQCFG registers A pre-release silicon erratum workaround where wq reset does not clear WQCFG registers was leaked into upstream code. Use wq reset command instead of blasting the MMIO region. This also address an issue where we clobber registers in future devices.
CVE-2024-56761 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/fred: Clear WFE in missing-ENDBRANCH #CPs An indirect branch instruction sets the CPU indirect branch tracker (IBT) into WAIT_FOR_ENDBRANCH (WFE) state and WFE stays asserted across the instruction boundary. When the decoder finds an inappropriate instruction while WFE is set ENDBR, the CPU raises a #CP fault. For the "kernel IBT no ENDBR" selftest where #CPs are deliberately triggered, the WFE state of the interrupted context needs to be cleared to let execution continue. Otherwise when the CPU resumes from the instruction that just caused the previous #CP, another missing-ENDBRANCH #CP is raised and the CPU enters a dead loop. This is not a problem with IDT because it doesn't preserve WFE and IRET doesn't set WFE. But FRED provides space on the entry stack (in an expanded CS area) to save and restore the WFE state, thus the WFE state is no longer clobbered, so software must clear it. Clear WFE to avoid dead looping in ibt_clear_fred_wfe() and the !ibt_fatal code path when execution is allowed to continue. Clobbering WFE in any other circumstance is a security-relevant bug. [ dhansen: changelog rewording ]
CVE-2024-53080 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/panthor: Lock XArray when getting entries for the VM Similar to commit cac075706f29 ("drm/panthor: Fix race when converting group handle to group object") we need to use the XArray's internal locking when retrieving a vm pointer from there. v2: Removed part of the patch that was trying to protect fetching the heap pointer from XArray, as that operation is protected by the @pool->lock.
CVE-2024-53053 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: core: Fix another deadlock during RTC update If ufshcd_rtc_work calls ufshcd_rpm_put_sync() and the pm's usage_count is 0, we will enter the runtime suspend callback. However, the runtime suspend callback will wait to flush ufshcd_rtc_work, causing a deadlock. Replace ufshcd_rpm_put_sync() with ufshcd_rpm_put() to avoid the deadlock.
CVE-2024-50037 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/fbdev-dma: Only cleanup deferred I/O if necessary Commit 5a498d4d06d6 ("drm/fbdev-dma: Only install deferred I/O if necessary") initializes deferred I/O only if it is used. drm_fbdev_dma_fb_destroy() however calls fb_deferred_io_cleanup() unconditionally with struct fb_info.fbdefio == NULL. KASAN with the out-of-tree Apple silicon display driver posts following warning from __flush_work() of a random struct work_struct instead of the expected NULL pointer derefs. [ 22.053799] ------------[ cut here ]------------ [ 22.054832] WARNING: CPU: 2 PID: 1 at kernel/workqueue.c:4177 __flush_work+0x4d8/0x580 [ 22.056597] Modules linked in: uhid bnep uinput nls_ascii ip6_tables ip_tables i2c_dev loop fuse dm_multipath nfnetlink zram hid_magicmouse btrfs xor xor_neon brcmfmac_wcc raid6_pq hci_bcm4377 bluetooth brcmfmac hid_apple brcmutil nvmem_spmi_mfd simple_mfd_spmi dockchannel_hid cfg80211 joydev regmap_spmi nvme_apple ecdh_generic ecc macsmc_hid rfkill dwc3 appledrm snd_soc_macaudio macsmc_power nvme_core apple_isp phy_apple_atc apple_sart apple_rtkit_helper apple_dockchannel tps6598x macsmc_hwmon snd_soc_cs42l84 videobuf2_v4l2 spmi_apple_controller nvmem_apple_efuses videobuf2_dma_sg apple_z2 videobuf2_memops spi_nor panel_summit videobuf2_common asahi videodev pwm_apple apple_dcp snd_soc_apple_mca apple_admac spi_apple clk_apple_nco i2c_pasemi_platform snd_pcm_dmaengine mc i2c_pasemi_core mux_core ofpart adpdrm drm_dma_helper apple_dart apple_soc_cpufreq leds_pwm phram [ 22.073768] CPU: 2 UID: 0 PID: 1 Comm: systemd-shutdow Not tainted 6.11.2-asahi+ #asahi-dev [ 22.075612] Hardware name: Apple MacBook Pro (13-inch, M2, 2022) (DT) [ 22.077032] pstate: 01400005 (nzcv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--) [ 22.078567] pc : __flush_work+0x4d8/0x580 [ 22.079471] lr : __flush_work+0x54/0x580 [ 22.080345] sp : ffffc000836ef820 [ 22.081089] x29: ffffc000836ef880 x28: 0000000000000000 x27: ffff80002ddb7128 [ 22.082678] x26: dfffc00000000000 x25: 1ffff000096f0c57 x24: ffffc00082d3e358 [ 22.084263] x23: ffff80004b7862b8 x22: dfffc00000000000 x21: ffff80005aa1d470 [ 22.085855] x20: ffff80004b786000 x19: ffff80004b7862a0 x18: 0000000000000000 [ 22.087439] x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000005 [ 22.089030] x14: 1ffff800106ddf0a x13: 0000000000000000 x12: 0000000000000000 [ 22.090618] x11: ffffb800106ddf0f x10: dfffc00000000000 x9 : 1ffff800106ddf0e [ 22.092206] x8 : 0000000000000000 x7 : aaaaaaaaaaaaaaaa x6 : 0000000000000001 [ 22.093790] x5 : ffffc000836ef728 x4 : 0000000000000000 x3 : 0000000000000020 [ 22.095368] x2 : 0000000000000008 x1 : 00000000000000aa x0 : 0000000000000000 [ 22.096955] Call trace: [ 22.097505] __flush_work+0x4d8/0x580 [ 22.098330] flush_delayed_work+0x80/0xb8 [ 22.099231] fb_deferred_io_cleanup+0x3c/0x130 [ 22.100217] drm_fbdev_dma_fb_destroy+0x6c/0xe0 [drm_dma_helper] [ 22.101559] unregister_framebuffer+0x210/0x2f0 [ 22.102575] drm_fb_helper_unregister_info+0x48/0x60 [ 22.103683] drm_fbdev_dma_client_unregister+0x4c/0x80 [drm_dma_helper] [ 22.105147] drm_client_dev_unregister+0x1cc/0x230 [ 22.106217] drm_dev_unregister+0x58/0x570 [ 22.107125] apple_drm_unbind+0x50/0x98 [appledrm] [ 22.108199] component_del+0x1f8/0x3a8 [ 22.109042] dcp_platform_shutdown+0x24/0x38 [apple_dcp] [ 22.110357] platform_shutdown+0x70/0x90 [ 22.111219] device_shutdown+0x368/0x4d8 [ 22.112095] kernel_restart+0x6c/0x1d0 [ 22.112946] __arm64_sys_reboot+0x1c8/0x328 [ 22.113868] invoke_syscall+0x78/0x1a8 [ 22.114703] do_el0_svc+0x124/0x1a0 [ 22.115498] el0_svc+0x3c/0xe0 [ 22.116181] el0t_64_sync_handler+0x70/0xc0 [ 22.117110] el0t_64_sync+0x190/0x198 [ 22.117931] ---[ end trace 0000000000000000 ]---
CVE-2024-50025 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: fnic: Move flush_work initialization out of if block After commit 379a58caa199 ("scsi: fnic: Move fnic_fnic_flush_tx() to a work queue"), it can happen that a work item is sent to an uninitialized work queue. This may has the effect that the item being queued is never actually queued, and any further actions depending on it will not proceed. The following warning is observed while the fnic driver is loaded: kernel: WARNING: CPU: 11 PID: 0 at ../kernel/workqueue.c:1524 __queue_work+0x373/0x410 kernel: <IRQ> kernel: queue_work_on+0x3a/0x50 kernel: fnic_wq_copy_cmpl_handler+0x54a/0x730 [fnic 62fbff0c42e7fb825c60a55cde2fb91facb2ed24] kernel: fnic_isr_msix_wq_copy+0x2d/0x60 [fnic 62fbff0c42e7fb825c60a55cde2fb91facb2ed24] kernel: __handle_irq_event_percpu+0x36/0x1a0 kernel: handle_irq_event_percpu+0x30/0x70 kernel: handle_irq_event+0x34/0x60 kernel: handle_edge_irq+0x7e/0x1a0 kernel: __common_interrupt+0x3b/0xb0 kernel: common_interrupt+0x58/0xa0 kernel: </IRQ> It has been observed that this may break the rediscovery of Fibre Channel devices after a temporary fabric failure. This patch fixes it by moving the work queue initialization out of an if block in fnic_probe().
CVE-2024-50004 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: update DML2 policy EnhancedPrefetchScheduleAccelerationFinal DCN35 [WHY & HOW] Mismatch in DCN35 DML2 cause bw validation failed to acquire unexpected DPP pipe to cause grey screen and system hang. Remove EnhancedPrefetchScheduleAccelerationFinal value override to match HW spec. (cherry picked from commit 9dad21f910fcea2bdcff4af46159101d7f9cd8ba)
CVE-2024-49980 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: vrf: revert "vrf: Remove unnecessary RCU-bh critical section" This reverts commit 504fc6f4f7f681d2a03aa5f68aad549d90eab853. dev_queue_xmit_nit is expected to be called with BH disabled. __dev_queue_xmit has the following: /* Disable soft irqs for various locks below. Also * stops preemption for RCU. */ rcu_read_lock_bh(); VRF must follow this invariant. The referenced commit removed this protection. Which triggered a lockdep warning: ================================ WARNING: inconsistent lock state 6.11.0 #1 Tainted: G W -------------------------------- inconsistent {IN-SOFTIRQ-W} -> {SOFTIRQ-ON-W} usage. btserver/134819 [HC0[0]:SC0[0]:HE1:SE1] takes: ffff8882da30c118 (rlock-AF_PACKET){+.?.}-{2:2}, at: tpacket_rcv+0x863/0x3b30 {IN-SOFTIRQ-W} state was registered at: lock_acquire+0x19a/0x4f0 _raw_spin_lock+0x27/0x40 packet_rcv+0xa33/0x1320 __netif_receive_skb_core.constprop.0+0xcb0/0x3a90 __netif_receive_skb_list_core+0x2c9/0x890 netif_receive_skb_list_internal+0x610/0xcc0 [...] other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(rlock-AF_PACKET); <Interrupt> lock(rlock-AF_PACKET); *** DEADLOCK *** Call Trace: <TASK> dump_stack_lvl+0x73/0xa0 mark_lock+0x102e/0x16b0 __lock_acquire+0x9ae/0x6170 lock_acquire+0x19a/0x4f0 _raw_spin_lock+0x27/0x40 tpacket_rcv+0x863/0x3b30 dev_queue_xmit_nit+0x709/0xa40 vrf_finish_direct+0x26e/0x340 [vrf] vrf_l3_out+0x5f4/0xe80 [vrf] __ip_local_out+0x51e/0x7a0 [...]
CVE-2024-49976 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tracing/timerlat: Drop interface_lock in stop_kthread() stop_kthread() is the offline callback for "trace/osnoise:online", since commit 5bfbcd1ee57b ("tracing/timerlat: Add interface_lock around clearing of kthread in stop_kthread()"), the following ABBA deadlock scenario is introduced: T1 | T2 [BP] | T3 [AP] osnoise_hotplug_workfn() | work_for_cpu_fn() | cpuhp_thread_fun() | _cpu_down() | osnoise_cpu_die() mutex_lock(&interface_lock) | | stop_kthread() | cpus_write_lock() | mutex_lock(&interface_lock) cpus_read_lock() | cpuhp_kick_ap() | As the interface_lock here in just for protecting the "kthread" field of the osn_var, use xchg() instead to fix this issue. Also use for_each_online_cpu() back in stop_per_cpu_kthreads() as it can take cpu_read_lock() again.
CVE-2024-49953 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Fix crash caused by calling __xfrm_state_delete() twice The km.state is not checked in driver's delayed work. When xfrm_state_check_expire() is called, the state can be reset to XFRM_STATE_EXPIRED, even if it is XFRM_STATE_DEAD already. This happens when xfrm state is deleted, but not freed yet. As __xfrm_state_delete() is called again in xfrm timer, the following crash occurs. To fix this issue, skip xfrm_state_check_expire() if km.state is not XFRM_STATE_VALID. Oops: general protection fault, probably for non-canonical address 0xdead000000000108: 0000 [#1] SMP CPU: 5 UID: 0 PID: 7448 Comm: kworker/u102:2 Not tainted 6.11.0-rc2+ #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Workqueue: mlx5e_ipsec: eth%d mlx5e_ipsec_handle_sw_limits [mlx5_core] RIP: 0010:__xfrm_state_delete+0x3d/0x1b0 Code: 0f 84 8b 01 00 00 48 89 fd c6 87 c8 00 00 00 05 48 8d bb 40 10 00 00 e8 11 04 1a 00 48 8b 95 b8 00 00 00 48 8b 85 c0 00 00 00 <48> 89 42 08 48 89 10 48 8b 55 10 48 b8 00 01 00 00 00 00 ad de 48 RSP: 0018:ffff88885f945ec8 EFLAGS: 00010246 RAX: dead000000000122 RBX: ffffffff82afa940 RCX: 0000000000000036 RDX: dead000000000100 RSI: 0000000000000000 RDI: ffffffff82afb980 RBP: ffff888109a20340 R08: ffff88885f945ea0 R09: 0000000000000000 R10: 0000000000000000 R11: ffff88885f945ff8 R12: 0000000000000246 R13: ffff888109a20340 R14: ffff88885f95f420 R15: ffff88885f95f400 FS: 0000000000000000(0000) GS:ffff88885f940000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f2163102430 CR3: 00000001128d6001 CR4: 0000000000370eb0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <IRQ> ? die_addr+0x33/0x90 ? exc_general_protection+0x1a2/0x390 ? asm_exc_general_protection+0x22/0x30 ? __xfrm_state_delete+0x3d/0x1b0 ? __xfrm_state_delete+0x2f/0x1b0 xfrm_timer_handler+0x174/0x350 ? __xfrm_state_delete+0x1b0/0x1b0 __hrtimer_run_queues+0x121/0x270 hrtimer_run_softirq+0x88/0xd0 handle_softirqs+0xcc/0x270 do_softirq+0x3c/0x50 </IRQ> <TASK> __local_bh_enable_ip+0x47/0x50 mlx5e_ipsec_handle_sw_limits+0x7d/0x90 [mlx5_core] process_one_work+0x137/0x2d0 worker_thread+0x28d/0x3a0 ? rescuer_thread+0x480/0x480 kthread+0xb8/0xe0 ? kthread_park+0x80/0x80 ret_from_fork+0x2d/0x50 ? kthread_park+0x80/0x80 ret_from_fork_asm+0x11/0x20 </TASK>
CVE-2024-49943 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/xe/guc_submit: add missing locking in wedged_fini Any non-wedged queue can have a zero refcount here and can be running concurrently with an async queue destroy, therefore dereferencing the queue ptr to check wedge status after the lookup can trigger UAF if queue is not wedged. Fix this by keeping the submission_state lock held around the check to postpone the free and make the check safe, before dropping again around the put() to avoid the deadlock. (cherry picked from commit d28af0b6b9580b9f90c265a7da0315b0ad20bbfd)
CVE-2024-47746 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fuse: use exclusive lock when FUSE_I_CACHE_IO_MODE is set This may be a typo. The comment has said shared locks are not allowed when this bit is set. If using shared lock, the wait in `fuse_file_cached_io_open` may be forever.
CVE-2024-47744 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: KVM: Use dedicated mutex to protect kvm_usage_count to avoid deadlock Use a dedicated mutex to guard kvm_usage_count to fix a potential deadlock on x86 due to a chain of locks and SRCU synchronizations. Translating the below lockdep splat, CPU1 #6 will wait on CPU0 #1, CPU0 #8 will wait on CPU2 #3, and CPU2 #7 will wait on CPU1 #4 (if there's a writer, due to the fairness of r/w semaphores). CPU0 CPU1 CPU2 1 lock(&kvm->slots_lock); 2 lock(&vcpu->mutex); 3 lock(&kvm->srcu); 4 lock(cpu_hotplug_lock); 5 lock(kvm_lock); 6 lock(&kvm->slots_lock); 7 lock(cpu_hotplug_lock); 8 sync(&kvm->srcu); Note, there are likely more potential deadlocks in KVM x86, e.g. the same pattern of taking cpu_hotplug_lock outside of kvm_lock likely exists with __kvmclock_cpufreq_notifier(): cpuhp_cpufreq_online() | -> cpufreq_online() | -> cpufreq_gov_performance_limits() | -> __cpufreq_driver_target() | -> __target_index() | -> cpufreq_freq_transition_begin() | -> cpufreq_notify_transition() | -> ... __kvmclock_cpufreq_notifier() But, actually triggering such deadlocks is beyond rare due to the combination of dependencies and timings involved. E.g. the cpufreq notifier is only used on older CPUs without a constant TSC, mucking with the NX hugepage mitigation while VMs are running is very uncommon, and doing so while also onlining/offlining a CPU (necessary to generate contention on cpu_hotplug_lock) would be even more unusual. The most robust solution to the general cpu_hotplug_lock issue is likely to switch vm_list to be an RCU-protected list, e.g. so that x86's cpufreq notifier doesn't to take kvm_lock. For now, settle for fixing the most blatant deadlock, as switching to an RCU-protected list is a much more involved change, but add a comment in locking.rst to call out that care needs to be taken when walking holding kvm_lock and walking vm_list. ====================================================== WARNING: possible circular locking dependency detected 6.10.0-smp--c257535a0c9d-pip #330 Tainted: G S O ------------------------------------------------------ tee/35048 is trying to acquire lock: ff6a80eced71e0a8 (&kvm->slots_lock){+.+.}-{3:3}, at: set_nx_huge_pages+0x179/0x1e0 [kvm] but task is already holding lock: ffffffffc07abb08 (kvm_lock){+.+.}-{3:3}, at: set_nx_huge_pages+0x14a/0x1e0 [kvm] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (kvm_lock){+.+.}-{3:3}: __mutex_lock+0x6a/0xb40 mutex_lock_nested+0x1f/0x30 kvm_dev_ioctl+0x4fb/0xe50 [kvm] __se_sys_ioctl+0x7b/0xd0 __x64_sys_ioctl+0x21/0x30 x64_sys_call+0x15d0/0x2e60 do_syscall_64+0x83/0x160 entry_SYSCALL_64_after_hwframe+0x76/0x7e -> #2 (cpu_hotplug_lock){++++}-{0:0}: cpus_read_lock+0x2e/0xb0 static_key_slow_inc+0x16/0x30 kvm_lapic_set_base+0x6a/0x1c0 [kvm] kvm_set_apic_base+0x8f/0xe0 [kvm] kvm_set_msr_common+0x9ae/0xf80 [kvm] vmx_set_msr+0xa54/0xbe0 [kvm_intel] __kvm_set_msr+0xb6/0x1a0 [kvm] kvm_arch_vcpu_ioctl+0xeca/0x10c0 [kvm] kvm_vcpu_ioctl+0x485/0x5b0 [kvm] __se_sys_ioctl+0x7b/0xd0 __x64_sys_ioctl+0x21/0x30 x64_sys_call+0x15d0/0x2e60 do_syscall_64+0x83/0x160 entry_SYSCALL_64_after_hwframe+0x76/0x7e -> #1 (&kvm->srcu){.+.+}-{0:0}: __synchronize_srcu+0x44/0x1a0 ---truncated---
CVE-2024-47736 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: erofs: handle overlapped pclusters out of crafted images properly syzbot reported a task hang issue due to a deadlock case where it is waiting for the folio lock of a cached folio that will be used for cache I/Os. After looking into the crafted fuzzed image, I found it's formed with several overlapped big pclusters as below: Ext: logical offset | length : physical offset | length 0: 0.. 16384 | 16384 : 151552.. 167936 | 16384 1: 16384.. 32768 | 16384 : 155648.. 172032 | 16384 2: 32768.. 49152 | 16384 : 537223168.. 537239552 | 16384 ... Here, extent 0/1 are physically overlapped although it's entirely _impossible_ for normal filesystem images generated by mkfs. First, managed folios containing compressed data will be marked as up-to-date and then unlocked immediately (unlike in-place folios) when compressed I/Os are complete. If physical blocks are not submitted in the incremental order, there should be separate BIOs to avoid dependency issues. However, the current code mis-arranges z_erofs_fill_bio_vec() and BIO submission which causes unexpected BIO waits. Second, managed folios will be connected to their own pclusters for efficient inter-queries. However, this is somewhat hard to implement easily if overlapped big pclusters exist. Again, these only appear in fuzzed images so let's simply fall back to temporary short-lived pages for correctness. Additionally, it justifies that referenced managed folios cannot be truncated for now and reverts part of commit 2080ca1ed3e4 ("erofs: tidy up `struct z_erofs_bvec`") for simplicity although it shouldn't be any difference.
CVE-2024-47729 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/xe: Use reserved copy engine for user binds on faulting devices User binds map to engines with can fault, faults depend on user binds completion, thus we can deadlock. Avoid this by using reserved copy engine for user binds on faulting devices. While we are here, normalize bind queue creation with a helper. v2: - Pass in extensions to bind queue creation (CI) v3: - s/resevered/reserved (Lucas) - Fix NULL hwe check (Jonathan)
CVE-2024-47716 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ARM: 9410/1: vfp: Use asm volatile in fmrx/fmxr macros Floating point instructions in userspace can crash some arm kernels built with clang/LLD 17.0.6: BUG: unsupported FP instruction in kernel mode FPEXC == 0xc0000780 Internal error: Oops - undefined instruction: 0 [#1] ARM CPU: 0 PID: 196 Comm: vfp-reproducer Not tainted 6.10.0 #1 Hardware name: BCM2835 PC is at vfp_support_entry+0xc8/0x2cc LR is at do_undefinstr+0xa8/0x250 pc : [<c0101d50>] lr : [<c010a80c>] psr: a0000013 sp : dc8d1f68 ip : 60000013 fp : bedea19c r10: ec532b17 r9 : 00000010 r8 : 0044766c r7 : c0000780 r6 : ec532b17 r5 : c1c13800 r4 : dc8d1fb0 r3 : c10072c4 r2 : c0101c88 r1 : ec532b17 r0 : 0044766c Flags: NzCv IRQs on FIQs on Mode SVC_32 ISA ARM Segment none Control: 00c5387d Table: 0251c008 DAC: 00000051 Register r0 information: non-paged memory Register r1 information: vmalloc memory Register r2 information: non-slab/vmalloc memory Register r3 information: non-slab/vmalloc memory Register r4 information: 2-page vmalloc region Register r5 information: slab kmalloc-cg-2k Register r6 information: vmalloc memory Register r7 information: non-slab/vmalloc memory Register r8 information: non-paged memory Register r9 information: zero-size pointer Register r10 information: vmalloc memory Register r11 information: non-paged memory Register r12 information: non-paged memory Process vfp-reproducer (pid: 196, stack limit = 0x61aaaf8b) Stack: (0xdc8d1f68 to 0xdc8d2000) 1f60: 0000081f b6f69300 0000000f c10073f4 c10072c4 dc8d1fb0 1f80: ec532b17 0c532b17 0044766c b6f9ccd8 00000000 c010a80c 00447670 60000010 1fa0: ffffffff c1c13800 00c5387d c0100f10 b6f68af8 00448fc0 00000000 bedea188 1fc0: bedea314 00000001 00448ebc b6f9d000 00447608 b6f9ccd8 00000000 bedea19c 1fe0: bede9198 bedea188 b6e1061c 0044766c 60000010 ffffffff 00000000 00000000 Call trace: [<c0101d50>] (vfp_support_entry) from [<c010a80c>] (do_undefinstr+0xa8/0x250) [<c010a80c>] (do_undefinstr) from [<c0100f10>] (__und_usr+0x70/0x80) Exception stack(0xdc8d1fb0 to 0xdc8d1ff8) 1fa0: b6f68af8 00448fc0 00000000 bedea188 1fc0: bedea314 00000001 00448ebc b6f9d000 00447608 b6f9ccd8 00000000 bedea19c 1fe0: bede9198 bedea188 b6e1061c 0044766c 60000010 ffffffff Code: 0a000061 e3877202 e594003c e3a09010 (eef16a10) ---[ end trace 0000000000000000 ]--- Kernel panic - not syncing: Fatal exception in interrupt ---[ end Kernel panic - not syncing: Fatal exception in interrupt ]--- This is a minimal userspace reproducer on a Raspberry Pi Zero W: #include <stdio.h> #include <math.h> int main(void) { double v = 1.0; printf("%fn", NAN + *(volatile double *)&v); return 0; } Another way to consistently trigger the oops is: calvin@raspberry-pi-zero-w ~$ python -c "import json" The bug reproduces only when the kernel is built with DYNAMIC_DEBUG=n, because the pr_debug() calls act as barriers even when not activated. This is the output from the same kernel source built with the same compiler and DYNAMIC_DEBUG=y, where the userspace reproducer works as expected: VFP: bounce: trigger ec532b17 fpexc c0000780 VFP: emulate: INST=0xee377b06 SCR=0x00000000 VFP: bounce: trigger eef1fa10 fpexc c0000780 VFP: emulate: INST=0xeeb40b40 SCR=0x00000000 VFP: raising exceptions 30000000 calvin@raspberry-pi-zero-w ~$ ./vfp-reproducer nan Crudely grepping for vmsr/vmrs instructions in the otherwise nearly idential text for vfp_support_entry() makes the problem obvious: vmlinux.llvm.good [0xc0101cb8] <+48>: vmrs r7, fpexc vmlinux.llvm.good [0xc0101cd8] <+80>: vmsr fpexc, r0 vmlinux.llvm.good [0xc0101d20 ---truncated---
CVE-2024-47703 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf, lsm: Add check for BPF LSM return value A bpf prog returning a positive number attached to file_alloc_security hook makes kernel panic. This happens because file system can not filter out the positive number returned by the LSM prog using IS_ERR, and misinterprets this positive number as a file pointer. Given that hook file_alloc_security never returned positive number before the introduction of BPF LSM, and other BPF LSM hooks may encounter similar issues, this patch adds LSM return value check in verifier, to ensure no unexpected value is returned.
CVE-2024-46868 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: firmware: qcom: uefisecapp: Fix deadlock in qcuefi_acquire() If the __qcuefi pointer is not set, then in the original code, we would hold onto the lock. That means that if we tried to set it later, then it would cause a deadlock. Drop the lock on the error path. That's what all the callers are expecting.
CVE-2024-46867 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/xe/client: fix deadlock in show_meminfo() There is a real deadlock as well as sleeping in atomic() bug in here, if the bo put happens to be the last ref, since bo destruction wants to grab the same spinlock and sleeping locks. Fix that by dropping the ref using xe_bo_put_deferred(), and moving the final commit outside of the lock. Dropping the lock around the put is tricky since the bo can go out of scope and delete itself from the list, making it difficult to navigate to the next list entry. (cherry picked from commit 0083b8e6f11d7662283a267d4ce7c966812ffd8a)
CVE-2024-46866 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/xe/client: add missing bo locking in show_meminfo() bo_meminfo() wants to inspect bo state like tt and the ttm resource, however this state can change at any point leading to stuff like NPD and UAF, if the bo lock is not held. Grab the bo lock when calling bo_meminfo(), ensuring we drop any spinlocks first. In the case of object_idr we now also need to hold a ref. v2 (MattB) - Also add xe_bo_assert_held() (cherry picked from commit 4f63d712fa104c3ebefcb289d1e733e86d8698c7)