| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In Scanner::LiteralBuffer::NewCapacity of scanner.cc, there is a possible out of bounds write due to an integer overflow. This could lead to remote code execution if an attacker can supply a malicious PAC file, with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-11 Android-8.1 Android-9 Android-10Android ID: A-168041375 |
| In kisd, there is a possible out of bounds write due to an integer overflow. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation. Product: Android; Versions: Android-11; Patch ID: ALPS05425581. |
| In ged, there is a possible out of bounds write due to an integer overflow. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation. Product: Android; Versions: Android-8.1, Android-9, Android-10, Android-11; Patch ID: ALPS05431161. |
| In WAVSource::read of WAVExtractor.cpp, there is a possible out of bounds write due to an integer overflow. This could lead to remote information disclosure with no additional execution privileges needed. User interaction is needed for exploitation. Product: Android; Versions: Android-8.1, Android-9, Android-10, Android-11, Android-8.0; Android ID: A-170583712. |
| A Data Processing vulnerability in the Multi-Service process (multi-svcs) on the FPC of Juniper Networks Junos OS on the PTX Series routers may lead to the process becoming unresponsive, ultimately affecting traffic forwarding, allowing an attacker to cause a Denial of Service (DoS) condition . The Multi-Service Process running on the FPC is responsible for handling sampling-related operations when a J-Flow configuration is activated. This can occur during periods of heavy route churn, causing the Multi-Service Process to stop processing updates, without consuming any further updates from kernel. This back pressure towards the kernel affects further dynamic updates from other processes in the system, including RPD, causing a KRT-STUCK condition and traffic forwarding issues. An administrator can monitor the following command to check if there is the KRT queue is stuck: user@device > show krt state ... Number of async queue entries: 65007 <--- this value keep on increasing. The following logs/alarms will be observed when this condition exists: user@junos> show chassis alarms 2 alarms currently active Alarm time Class Description 2020-10-11 04:33:45 PDT Minor Potential slow peers are: MSP(FPC1-PIC0) MSP(FPC3-PIC0) MSP(FPC4-PIC0) Logs: Oct 11 04:33:44.672 2020 test /kernel: rts_peer_cp_recv_timeout : Bit set for msp8 as it is stuck Oct 11 04:35:56.000 2020 test-lab fpc4 user.err gldfpc-multi-svcs.elf: Error in parsing composite nexthop Oct 11 04:35:56.000 2020 test-lab fpc4 user.err gldfpc-multi-svcs.elf: composite nexthop parsing error Oct 11 04:43:05 2020 test /kernel: rt_pfe_veto: Possible slowest client is msp38. States processed - 65865741. States to be processed - 0 Oct 11 04:55:55 2020 test /kernel: rt_pfe_veto: Memory usage of M_RTNEXTHOP type = (0) Max size possible for M_RTNEXTHOP type = (8311787520) Current delayed unref = (60000), Current unique delayed unref = (10896), Max delayed unref on this platform = (40000) Current delayed weight unref = (71426) Max delayed weight unref on this platform= (400000) curproc = rpd Oct 11 04:56:00 2020 test /kernel: rt_pfe_veto: Too many delayed route/nexthop unrefs. Op 2 err 55, rtsm_id 5:-1, msg type 2 This issue only affects PTX Series devices. No other products or platforms are affected by this vulnerability. This issue affects Juniper Networks Junos OS on PTX Series: 18.2 versions prior to 18.2R3-S7; 18.3 versions prior to 18.3R3-S4; 18.4 versions prior to 18.4R2-S8, 18.4R3-S7; 19.1 versions prior to 19.1R3-S4; 19.2 versions prior to 19.2R3-S1; 19.3 versions prior to 19.3R3-S1; 19.4 versions prior to 19.4R2-S4, 19.4R3-S1; 20.1 versions prior to 20.1R2; 20.2 versions prior to 20.2R2; 20.3 versions prior to 20.3R1-S2, 20.3R2. This issue does not affect Juniper Networks Junos OS versions prior to 18.2R1. |
| An integer overflow was addressed through improved input validation. This issue is fixed in iOS 13.6 and iPadOS 13.6, macOS Catalina 10.15.6, tvOS 13.4.8, watchOS 6.2.8, iTunes 12.10.8 for Windows, iCloud for Windows 11.3, iCloud for Windows 7.20. Processing a maliciously crafted image may lead to arbitrary code execution. |
| An integer overflow was addressed through improved input validation. This issue is fixed in iOS 13.5 and iPadOS 13.5, macOS Catalina 10.15.5, tvOS 13.4.5, watchOS 6.2.5. A malicious application may be able to execute arbitrary code with kernel privileges. |
| An integer overflow was addressed through improved input validation. This issue is fixed in macOS Catalina 10.15.5. An application may be able to execute arbitrary code with kernel privileges. |
| HUAWEI P30 Pro smartphone with Versions earlier than 10.1.0.160(C00E160R2P8) has an integer overflow vulnerability. Some functions are lack of verification when they process some messages sent from other module. Attackers can exploit this vulnerability by send malicious message to cause integer overflow. This can compromise normal service. |
| This vulnerability allows local attackers to escalate privileges on affected installations of Parallels Desktop 15.1.2-47123. An attacker must first obtain the ability to execute high-privileged code on the target guest system in order to exploit this vulnerability. The specific flaw exists within the xHCI component. The issue results from the lack of proper validation of user-supplied data, which can result in an integer overflow before allocating a buffer. An attacker can leverage this vulnerability to escalate privileges and execute code in the context of the hypervisor. Was ZDI-CAN-10032. |
| This vulnerability allows remote attackers to execute arbitrary code on affected installations of Foxit Reader 9.6.0.25114. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of JPEG files within CovertToPDF. The issue results from the lack of proper validation of user-supplied data, which can result in an integer overflow before writing to memory. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-9102. |
| Integer overflow in subsystem for Intel(R) AMT versions before 11.8.80, 11.12.80, 11.22.80, 12.0.70, 14.0.45 may allow a privileged user to potentially enable escalation of privilege via local access. |
| Integer overflow in subsystem for Intel(R) AMT versions before 11.8.80, 11.12.80, 11.22.80, 12.0.70 and 14.0.45 may allow an unauthenticated user to potentially enable denial of service via adjacent access. |
| In OSSEC-HIDS 2.7 through 3.5.0, the server component responsible for log analysis (ossec-analysisd) is vulnerable to an off-by-one heap-based buffer overflow during the cleaning of crafted syslog msgs (received from authenticated remote agents and delivered to the analysisd processing queue by ossec-remoted). |
| napi_get_value_string_*() allows various kinds of memory corruption in node < 10.21.0, 12.18.0, and < 14.4.0. |
| Go before 1.12.16 and 1.13.x before 1.13.7 (and the crypto/cryptobyte package before 0.0.0-20200124225646-8b5121be2f68 for Go) allows attacks on clients (resulting in a panic) via a malformed X.509 certificate. |
| The vulnerability function is enabled when the streamer service related to the AfreecaTV communicated through web socket using 21201 port. A stack-based buffer overflow leading to remote code execution was discovered in strcpy() operate by "FanTicket" field. It is because of stored data without validation of length. |
| DaviewIndy v8.98.7.0 and earlier versions have a Integer overflow vulnerability, triggered when the user opens a malformed format file that is mishandled by DaviewIndy. Attackers could exploit this and arbitrary code execution. |
| UnEGG v0.5 and eariler versions have a Integer overflow vulnerability, triggered when the user opens a malformed specific file that is mishandled by UnEGG. Attackers could exploit this and arbitrary code execution. This issue affects: Estsoft UnEGG 0.5 versions prior to 1.0 on linux. |
| Data is truncated wrong when its length is greater than 255 bytes. |