| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A flaw was found in dnsmasq before version 2.83. A heap-based buffer overflow was discovered in dnsmasq when DNSSEC is enabled and before it validates the received DNS entries. This flaw allows a remote attacker, who can create valid DNS replies, to cause an overflow in a heap-allocated memory. This flaw is caused by the lack of length checks in rfc1035.c:extract_name(), which could be abused to make the code execute memcpy() with a negative size in sort_rrset() and cause a crash in dnsmasq, resulting in a denial of service. The highest threat from this vulnerability is to system availability. |
| A flaw was found in dnsmasq before version 2.83. When receiving a query, dnsmasq does not check for an existing pending request for the same name and forwards a new request. By default, a maximum of 150 pending queries can be sent to upstream servers, so there can be at most 150 queries for the same name. This flaw allows an off-path attacker on the network to substantially reduce the number of attempts that it would have to perform to forge a reply and have it accepted by dnsmasq. This issue is mentioned in the "Birthday Attacks" section of RFC5452. If chained with CVE-2020-25684, the attack complexity of a successful attack is reduced. The highest threat from this vulnerability is to data integrity. |
| A flaw was found in dnsmasq before version 2.83. When getting a reply from a forwarded query, dnsmasq checks in forward.c:reply_query(), which is the forwarded query that matches the reply, by only using a weak hash of the query name. Due to the weak hash (CRC32 when dnsmasq is compiled without DNSSEC, SHA-1 when it is) this flaw allows an off-path attacker to find several different domains all having the same hash, substantially reducing the number of attempts they would have to perform to forge a reply and get it accepted by dnsmasq. This is in contrast with RFC5452, which specifies that the query name is one of the attributes of a query that must be used to match a reply. This flaw could be abused to perform a DNS Cache Poisoning attack. If chained with CVE-2020-25684 the attack complexity of a successful attack is reduced. The highest threat from this vulnerability is to data integrity. |
| A flaw was found in dnsmasq before version 2.83. When getting a reply from a forwarded query, dnsmasq checks in the forward.c:reply_query() if the reply destination address/port is used by the pending forwarded queries. However, it does not use the address/port to retrieve the exact forwarded query, substantially reducing the number of attempts an attacker on the network would have to perform to forge a reply and get it accepted by dnsmasq. This issue contrasts with RFC5452, which specifies a query's attributes that all must be used to match a reply. This flaw allows an attacker to perform a DNS Cache Poisoning attack. If chained with CVE-2020-25685 or CVE-2020-25686, the attack complexity of a successful attack is reduced. The highest threat from this vulnerability is to data integrity. |
| A flaw was found in dnsmasq before version 2.83. A heap-based buffer overflow was discovered in dnsmasq when DNSSEC is enabled and before it validates the received DNS entries. A remote attacker, who can create valid DNS replies, could use this flaw to cause an overflow in a heap-allocated memory. This flaw is caused by the lack of length checks in rfc1035.c:extract_name(), which could be abused to make the code execute memcpy() with a negative size in get_rdata() and cause a crash in dnsmasq, resulting in a denial of service. The highest threat from this vulnerability is to system availability. |
| A flaw was found in dnsmasq before 2.83. A buffer overflow vulnerability was discovered in the way dnsmasq extract names from DNS packets before validating them with DNSSEC data. An attacker on the network, who can create valid DNS replies, could use this flaw to cause an overflow with arbitrary data in a heap-allocated memory, possibly executing code on the machine. The flaw is in the rfc1035.c:extract_name() function, which writes data to the memory pointed by name assuming MAXDNAME*2 bytes are available in the buffer. However, in some code execution paths, it is possible extract_name() gets passed an offset from the base buffer, thus reducing, in practice, the number of available bytes that can be written in the buffer. The highest threat from this vulnerability is to data confidentiality and integrity as well as system availability. |
| A flaw was found in dnsmasq before version 2.83. A heap-based buffer overflow was discovered in the way RRSets are sorted before validating with DNSSEC data. An attacker on the network, who can forge DNS replies such as that they are accepted as valid, could use this flaw to cause a buffer overflow with arbitrary data in a heap memory segment, possibly executing code on the machine. The highest threat from this vulnerability is to data confidentiality and integrity as well as system availability. |
| nghttp2 is an implementation of the Hypertext Transfer Protocol version 2 in C. The nghttp2 library prior to version 1.61.0 keeps reading the unbounded number of HTTP/2 CONTINUATION frames even after a stream is reset to keep HPACK context in sync. This causes excessive CPU usage to decode HPACK stream. nghttp2 v1.61.0 mitigates this vulnerability by limiting the number of CONTINUATION frames it accepts per stream. There is no workaround for this vulnerability. |
| An attacker can make the Node.js HTTP/2 server completely unavailable by sending a small amount of HTTP/2 frames packets with a few HTTP/2 frames inside. It is possible to leave some data in nghttp2 memory after reset when headers with HTTP/2 CONTINUATION frame are sent to the server and then a TCP connection is abruptly closed by the client triggering the Http2Session destructor while header frames are still being processed (and stored in memory) causing a race condition. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/fpu: Stop relying on userspace for info to fault in xsave buffer
Before this change, the expected size of the user space buffer was
taken from fx_sw->xstate_size. fx_sw->xstate_size can be changed
from user-space, so it is possible construct a sigreturn frame where:
* fx_sw->xstate_size is smaller than the size required by valid bits in
fx_sw->xfeatures.
* user-space unmaps parts of the sigrame fpu buffer so that not all of
the buffer required by xrstor is accessible.
In this case, xrstor tries to restore and accesses the unmapped area
which results in a fault. But fault_in_readable succeeds because buf +
fx_sw->xstate_size is within the still mapped area, so it goes back and
tries xrstor again. It will spin in this loop forever.
Instead, fault in the maximum size which can be touched by XRSTOR (taken
from fpstate->user_size).
[ dhansen: tweak subject / changelog ] |
| In the Linux kernel, the following vulnerability has been resolved:
tls: fix race between tx work scheduling and socket close
Similarly to previous commit, the submitting thread (recvmsg/sendmsg)
may exit as soon as the async crypto handler calls complete().
Reorder scheduling the work before calling complete().
This seems more logical in the first place, as it's
the inverse order of what the submitting thread will do. |
| In the Linux kernel, the following vulnerability has been resolved:
net: tls: handle backlogging of crypto requests
Since we're setting the CRYPTO_TFM_REQ_MAY_BACKLOG flag on our
requests to the crypto API, crypto_aead_{encrypt,decrypt} can return
-EBUSY instead of -EINPROGRESS in valid situations. For example, when
the cryptd queue for AESNI is full (easy to trigger with an
artificially low cryptd.cryptd_max_cpu_qlen), requests will be enqueued
to the backlog but still processed. In that case, the async callback
will also be called twice: first with err == -EINPROGRESS, which it
seems we can just ignore, then with err == 0.
Compared to Sabrina's original patch this version uses the new
tls_*crypt_async_wait() helpers and converts the EBUSY to
EINPROGRESS to avoid having to modify all the error handling
paths. The handling is identical. |
| In the Linux kernel, the following vulnerability has been resolved:
tls: fix race between async notify and socket close
The submitting thread (one which called recvmsg/sendmsg)
may exit as soon as the async crypto handler calls complete()
so any code past that point risks touching already freed data.
Try to avoid the locking and extra flags altogether.
Have the main thread hold an extra reference, this way
we can depend solely on the atomic ref counter for
synchronization.
Don't futz with reiniting the completion, either, we are now
tightly controlling when completion fires. |
| In the Linux kernel, the following vulnerability has been resolved:
net: tls: fix use-after-free with partial reads and async decrypt
tls_decrypt_sg doesn't take a reference on the pages from clear_skb,
so the put_page() in tls_decrypt_done releases them, and we trigger
a use-after-free in process_rx_list when we try to read from the
partially-read skb. |
| Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Security). Supported versions that are affected are Oracle Java SE: 8u391, 8u391-perf, 11.0.21, 17.0.9, 21.0.1; Oracle GraalVM for JDK: 17.0.9, 21.0.1; Oracle GraalVM Enterprise Edition: 20.3.12, 21.3.8 and 22.3.4. Difficult to exploit vulnerability allows low privileged attacker with logon to the infrastructure where Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition executes to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability can be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. This vulnerability also applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. CVSS 3.1 Base Score 4.7 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:N/A:N). |
| Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Hotspot). Supported versions that are affected are Oracle Java SE: 8u391, 8u391-perf, 11.0.21, 17.0.9, 21.0.1; Oracle GraalVM for JDK: 17.0.9, 21.0.1; Oracle GraalVM Enterprise Edition: 20.3.12, 21.3.8 and 22.3.4. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability can be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. This vulnerability also applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. CVSS 3.1 Base Score 5.9 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:N/A:N). |
| Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Hotspot). Supported versions that are affected are Oracle Java SE: 8u391, 8u391-perf, 11.0.21, 17.0.9, 21.0.1; Oracle GraalVM for JDK: 17.0.9, 21.0.1; Oracle GraalVM Enterprise Edition: 20.3.12, 21.3.8 and 22.3.4. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized creation, deletion or modification access to critical data or all Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability can only be exploited by supplying data to APIs in the specified Component without using Untrusted Java Web Start applications or Untrusted Java applets, such as through a web service. CVSS 3.1 Base Score 5.9 (Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:H/A:N). |
| NSS was susceptible to a timing side-channel attack when performing RSA decryption. This attack could potentially allow an attacker to recover the private data. This vulnerability affects Firefox < 124, Firefox ESR < 115.9, and Thunderbird < 115.9. |
| libexpat through 2.5.0 allows a denial of service (resource consumption) because many full reparsings are required in the case of a large token for which multiple buffer fills are needed. |
| The Closest Encloser Proof aspect of the DNS protocol (in RFC 5155 when RFC 9276 guidance is skipped) allows remote attackers to cause a denial of service (CPU consumption for SHA-1 computations) via DNSSEC responses in a random subdomain attack, aka the "NSEC3" issue. The RFC 5155 specification implies that an algorithm must perform thousands of iterations of a hash function in certain situations. |