| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Hotspot). Supported versions that are affected are Oracle Java SE: 8u391, 8u391-perf, 11.0.21, 17.0.9, 21.0.1; Oracle GraalVM for JDK: 17.0.9, 21.0.1; Oracle GraalVM Enterprise Edition: 20.3.12, 21.3.8 and 22.3.4. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized creation, deletion or modification access to critical data or all Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data as well as unauthorized access to critical data or complete access to all Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability can be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. This vulnerability also applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. CVSS 3.1 Base Score 7.4 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:N). |
| Windows libarchive Remote Code Execution Vulnerability |
| In PHP versions 8.1.* before 8.1.31, 8.2.* before 8.2.26, 8.3.* before 8.3.14, uncontrolled long string inputs to ldap_escape() function on 32-bit systems can cause an integer overflow, resulting in an out-of-bounds write. |
| StreamReader::ReadFromExternal in RenderDoc before 1.27 allows an Integer Overflow with a resultant Buffer Overflow. It uses uint32_t(m_BufferSize-m_InputSize) even though m_InputSize can exceed m_BufferSize. |
| SerialiseValue in RenderDoc before 1.27 allows an Integer Overflow with a resultant Buffer Overflow. 0xffffffff is sign-extended to 0xffffffffffffffff (SIZE_MAX) and then there is an attempt to add 1. |
| Redis is an in-memory database that persists on disk. Authenticated users issuing specially crafted `SETRANGE` and `SORT(_RO)` commands can trigger an integer overflow, resulting with Redis attempting to allocate impossible amounts of memory and abort with an out-of-memory (OOM) panic. The problem is fixed in Redis versions 7.0.8, 6.2.9 and 6.0.17. Users are advised to upgrade. There are no known workarounds for this vulnerability. |
| An integer overflow was addressed through improved input validation. This issue is fixed in macOS Ventura 13.7.3, macOS Sequoia 15.3, macOS Sonoma 14.7.3. An app may be able to elevate privileges. |
| In the Linux kernel, the following vulnerability has been resolved:
net/sctp: Prevent autoclose integer overflow in sctp_association_init()
While by default max_autoclose equals to INT_MAX / HZ, one may set
net.sctp.max_autoclose to UINT_MAX. There is code in
sctp_association_init() that can consequently trigger overflow. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/uverbs: Prevent integer overflow issue
In the expression "cmd.wqe_size * cmd.wr_count", both variables are u32
values that come from the user so the multiplication can lead to integer
wrapping. Then we pass the result to uverbs_request_next_ptr() which also
could potentially wrap. The "cmd.sge_count * sizeof(struct ib_uverbs_sge)"
multiplication can also overflow on 32bit systems although it's fine on
64bit systems.
This patch does two things. First, I've re-arranged the condition in
uverbs_request_next_ptr() so that the use controlled variable "len" is on
one side of the comparison by itself without any math. Then I've modified
all the callers to use size_mul() for the multiplications. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf, sockmap: Several fixes to bpf_msg_pop_data
Several fixes to bpf_msg_pop_data,
1. In sk_msg_shift_left, we should put_page
2. if (len == 0), return early is better
3. pop the entire sk_msg (last == msg->sg.size) should be supported
4. Fix for the value of variable "a"
5. In sk_msg_shift_left, after shifting, i has already pointed to the next
element. Addtional sk_msg_iter_var_next may result in BUG. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: nl80211: fix NL80211_ATTR_MLO_LINK_ID off-by-one
Since the netlink attribute range validation provides inclusive
checking, the *max* of attribute NL80211_ATTR_MLO_LINK_ID should be
IEEE80211_MLD_MAX_NUM_LINKS - 1 otherwise causing an off-by-one.
One crash stack for demonstration:
==================================================================
BUG: KASAN: wild-memory-access in ieee80211_tx_control_port+0x3b6/0xca0 net/mac80211/tx.c:5939
Read of size 6 at addr 001102080000000c by task fuzzer.386/9508
CPU: 1 PID: 9508 Comm: syz.1.386 Not tainted 6.1.70 #2
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x177/0x231 lib/dump_stack.c:106
print_report+0xe0/0x750 mm/kasan/report.c:398
kasan_report+0x139/0x170 mm/kasan/report.c:495
kasan_check_range+0x287/0x290 mm/kasan/generic.c:189
memcpy+0x25/0x60 mm/kasan/shadow.c:65
ieee80211_tx_control_port+0x3b6/0xca0 net/mac80211/tx.c:5939
rdev_tx_control_port net/wireless/rdev-ops.h:761 [inline]
nl80211_tx_control_port+0x7b3/0xc40 net/wireless/nl80211.c:15453
genl_family_rcv_msg_doit+0x22e/0x320 net/netlink/genetlink.c:756
genl_family_rcv_msg net/netlink/genetlink.c:833 [inline]
genl_rcv_msg+0x539/0x740 net/netlink/genetlink.c:850
netlink_rcv_skb+0x1de/0x420 net/netlink/af_netlink.c:2508
genl_rcv+0x24/0x40 net/netlink/genetlink.c:861
netlink_unicast_kernel net/netlink/af_netlink.c:1326 [inline]
netlink_unicast+0x74b/0x8c0 net/netlink/af_netlink.c:1352
netlink_sendmsg+0x882/0xb90 net/netlink/af_netlink.c:1874
sock_sendmsg_nosec net/socket.c:716 [inline]
__sock_sendmsg net/socket.c:728 [inline]
____sys_sendmsg+0x5cc/0x8f0 net/socket.c:2499
___sys_sendmsg+0x21c/0x290 net/socket.c:2553
__sys_sendmsg net/socket.c:2582 [inline]
__do_sys_sendmsg net/socket.c:2591 [inline]
__se_sys_sendmsg+0x19e/0x270 net/socket.c:2589
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x45/0x90 arch/x86/entry/common.c:81
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Update the policy to ensure correct validation. |
| In the Linux kernel, the following vulnerability has been resolved:
EDAC/bluefield: Fix potential integer overflow
The 64-bit argument for the "get DIMM info" SMC call consists of mem_ctrl_idx
left-shifted 16 bits and OR-ed with DIMM index. With mem_ctrl_idx defined as
32-bits wide the left-shift operation truncates the upper 16 bits of
information during the calculation of the SMC argument.
The mem_ctrl_idx stack variable must be defined as 64-bits wide to prevent any
potential integer overflow, i.e. loss of data from upper 16 bits. |
| In the Linux kernel, the following vulnerability has been resolved:
svcrdma: Address an integer overflow
Dan Carpenter reports:
> Commit 78147ca8b4a9 ("svcrdma: Add a "parsed chunk list" data
> structure") from Jun 22, 2020 (linux-next), leads to the following
> Smatch static checker warning:
>
> net/sunrpc/xprtrdma/svc_rdma_recvfrom.c:498 xdr_check_write_chunk()
> warn: potential user controlled sizeof overflow 'segcount * 4 * 4'
>
> net/sunrpc/xprtrdma/svc_rdma_recvfrom.c
> 488 static bool xdr_check_write_chunk(struct svc_rdma_recv_ctxt *rctxt)
> 489 {
> 490 u32 segcount;
> 491 __be32 *p;
> 492
> 493 if (xdr_stream_decode_u32(&rctxt->rc_stream, &segcount))
> ^^^^^^^^
>
> 494 return false;
> 495
> 496 /* A bogus segcount causes this buffer overflow check to fail. */
> 497 p = xdr_inline_decode(&rctxt->rc_stream,
> --> 498 segcount * rpcrdma_segment_maxsz * sizeof(*p));
>
>
> segcount is an untrusted u32. On 32bit systems anything >= SIZE_MAX / 16 will
> have an integer overflow and some those values will be accepted by
> xdr_inline_decode(). |
| In the Linux kernel, the following vulnerability has been resolved:
NFSD: Prevent a potential integer overflow
If the tag length is >= U32_MAX - 3 then the "length + 4" addition
can result in an integer overflow. Address this by splitting the
decoding into several steps so that decode_cb_compound4res() does
not have to perform arithmetic on the unsafe length value. |
| In the Linux kernel, the following vulnerability has been resolved:
um: Fix potential integer overflow during physmem setup
This issue happens when the real map size is greater than LONG_MAX,
which can be easily triggered on UML/i386. |
| In the Linux kernel, the following vulnerability has been resolved:
net: fix crash when config small gso_max_size/gso_ipv4_max_size
Config a small gso_max_size/gso_ipv4_max_size will lead to an underflow
in sk_dst_gso_max_size(), which may trigger a BUG_ON crash,
because sk->sk_gso_max_size would be much bigger than device limits.
Call Trace:
tcp_write_xmit
tso_segs = tcp_init_tso_segs(skb, mss_now);
tcp_set_skb_tso_segs
tcp_skb_pcount_set
// skb->len = 524288, mss_now = 8
// u16 tso_segs = 524288/8 = 65535 -> 0
tso_segs = DIV_ROUND_UP(skb->len, mss_now)
BUG_ON(!tso_segs)
Add check for the minimum value of gso_max_size and gso_ipv4_max_size. |
| In the Linux kernel, the following vulnerability has been resolved:
block: fix integer overflow in BLKSECDISCARD
I independently rediscovered
commit 22d24a544b0d49bbcbd61c8c0eaf77d3c9297155
block: fix overflow in blk_ioctl_discard()
but for secure erase.
Same problem:
uint64_t r[2] = {512, 18446744073709551104ULL};
ioctl(fd, BLKSECDISCARD, r);
will enter near infinite loop inside blkdev_issue_secure_erase():
a.out: attempt to access beyond end of device
loop0: rw=5, sector=3399043073, nr_sectors = 1024 limit=2048
bio_check_eod: 3286214 callbacks suppressed |
| GStreamer is a library for constructing graphs of media-handling components. An integer underflow has been detected in the function qtdemux_parse_theora_extension within qtdemux.c. The vulnerability occurs due to an underflow of the gint size variable, which causes size to hold a large unintended value when cast to an unsigned integer. This 32-bit negative value is then cast to a 64-bit unsigned integer (0xfffffffffffffffa) in a subsequent call to gst_buffer_new_and_alloc. The function gst_buffer_new_allocate then attempts to allocate memory, eventually calling _sysmem_new_block. The function _sysmem_new_block adds alignment and header size to the (unsigned) size, causing the overflow of the 'slice_size' variable. As a result, only 0x89 bytes are allocated, despite the large input size. When the following memcpy call occurs in gst_buffer_fill, the data from the input file will overwrite the content of the GstMapInfo info structure. Finally, during the call to gst_memory_unmap, the overwritten memory may cause a function pointer hijack, as the mem->allocator->mem_unmap_full function is called with a corrupted pointer. This function pointer overwrite could allow an attacker to alter the execution flow of the program, leading to arbitrary code execution. This vulnerability is fixed in 1.24.10. |
| GStreamer is a library for constructing graphs of media-handling components. An integer underflow has been detected in extract_cc_from_data function within qtdemux.c. In the FOURCC_c708 case, the subtraction atom_length - 8 may result in an underflow if atom_length is less than 8. When that subtraction underflows, *cclen ends up being a large number, and then cclen is passed to g_memdup2 leading to an out-of-bounds (OOB) read. This vulnerability is fixed in 1.24.10. |
| GStreamer is a library for constructing graphs of media-handling components. An integer underflow has been detected in qtdemux_parse_trak function within qtdemux.c. During the strf parsing case, the subtraction size -= 40 can lead to a negative integer overflow if it is less than 40. If this happens, the subsequent call to gst_buffer_fill will invoke memcpy with a large tocopy size, resulting in an OOB-read. This vulnerability is fixed in 1.24.10. |