| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A flaw was found in grub2. When reading data from a jfs filesystem, grub's jfs filesystem module uses user-controlled parameters from the filesystem geometry to determine the internal buffer size, however, it improperly checks for integer overflows. A maliciouly crafted filesystem may lead some of those buffer size calculations to overflow, causing it to perform a grub_malloc() operation with a smaller size than expected. As a result, the grub_jfs_lookup_symlink() function will write past the internal buffer length during grub_jfs_read_file(). This issue can be leveraged to corrupt grub's internal critical data and may result in arbitrary code execution, by-passing secure boot protections. |
| A flaw was found in grub2. When performing a symlink lookup from a romfs filesystem, grub's romfs filesystem module uses user-controlled parameters from the filesystem geometry to determine the internal buffer size, however, it improperly checks for integer overflows. A maliciously crafted filesystem may lead some of those buffer size calculations to overflow, causing it to perform a grub_malloc() operation with a smaller size than expected. As a result, the grub_romfs_read_symlink() may cause out-of-bounds writes when the calling grub_disk_read() function. This issue may be leveraged to corrupt grub's internal critical data and can result in arbitrary code execution by-passing secure boot protections. |
| A flaw was found in grub2. When performing a symlink lookup from a reiserfs filesystem, grub's reiserfs fs module uses user-controlled parameters from the filesystem geometry to determine the internal buffer size, however, it improperly checks for integer overflows. A maliciouly crafted filesystem may lead some of those buffer size calculations to overflow, causing it to perform a grub_malloc() operation with a smaller size than expected. As a result, the grub_reiserfs_read_symlink() will call grub_reiserfs_read_real() with a overflown length parameter, leading to a heap based out-of-bounds write during data reading. This flaw may be leveraged to corrupt grub's internal critical data and can result in arbitrary code execution, by-passing secure boot protections. |
| A buffer overflow was found in Shim in the 32-bit system. The overflow happens due to an addition operation involving a user-controlled value parsed from the PE binary being used by Shim. This value is further used for memory allocation operations, leading to a heap-based buffer overflow. This flaw causes memory corruption and can lead to a crash or data integrity issues during the boot phase. |
| A vulnerability was found in Performance Co-Pilot (PCP). This flaw allows an attacker to send specially crafted data to the system, which could cause the program to misbehave or crash. |
| A flaw was found in grub2. A specially crafted JPEG file can cause the JPEG parser of grub2 to incorrectly check the bounds of its internal buffers, resulting in an out-of-bounds write. The possibility of overwriting sensitive information to bypass secure boot protections is not discarded. |
| An out-of-bounds write flaw was found in mpg123 when handling crafted streams. When decoding PCM, the libmpg123 may write past the end of a heap-located buffer. Consequently, heap corruption may happen, and arbitrary code execution is not discarded. The complexity required to exploit this flaw is considered high as the payload must be validated by the MPEG decoder and the PCM synth before execution. Additionally, to successfully execute the attack, the user must scan through the stream, making web live stream content (such as web radios) a very unlikely attack vector. |
| A vulnerability was found in Perl. This security issue occurs while Perl for Windows relies on the system path environment variable to find the shell (`cmd.exe`). When running an executable that uses the Windows Perl interpreter, Perl attempts to find and execute `cmd.exe` within the operating system. However, due to path search order issues, Perl initially looks for cmd.exe in the current working directory. This flaw allows an attacker with limited privileges to place`cmd.exe` in locations with weak permissions, such as `C:\ProgramData`. By doing so, arbitrary code can be executed when an administrator attempts to use this executable from these compromised locations. |
| A vulnerability was found in perl 5.30.0 through 5.38.0. This issue occurs when a crafted regular expression is compiled by perl, which can allow an attacker controlled byte buffer overflow in a heap allocated buffer. |
| A heap-based buffer overflow issue was found in ImageMagick's PushCharPixel() function in quantum-private.h. This issue may allow a local attacker to trick the user into opening a specially crafted file, triggering an out-of-bounds read error and allowing an application to crash, resulting in a denial of service. |
| A heap-based buffer overflow vulnerability was found in coders/tiff.c in ImageMagick. This issue may allow a local attacker to trick the user into opening a specially crafted file, resulting in an application crash and denial of service. |
| p7zip 16.02 was discovered to contain a heap-buffer-overflow vulnerability via the function NArchive::NZip::CInArchive::FindCd(bool) at CPP/7zip/Archive/Zip/ZipIn.cpp. NOTE: the Supplier has found that this is not a buffer overflow; at most an out-of-bounds read can occur. |
| An Out-of-bounds Write vulnerability [CWE-787] in FortiADC 8.0.0, 7.6.0 through 7.6.2, 7.4.0 through 7.4.7, 7.2 all versions, 7.1 all versions, 7.0 all versions, 6.2 all versions may allow an authenticated attacker to execute arbitrary code via specially crafted HTTP requests. |
| A remote code execution vulnerability was found in Shim. The Shim boot support trusts attacker-controlled values when parsing an HTTP response. This flaw allows an attacker to craft a specific malicious HTTP request, leading to a completely controlled out-of-bounds write primitive and complete system compromise. This flaw is only exploitable during the early boot phase, an attacker needs to perform a Man-in-the-Middle or compromise the boot server to be able to exploit this vulnerability successfully. |
| A flaw was found in the X.Org server. The cursor code in both Xephyr and Xwayland uses the wrong type of private at creation. It uses the cursor bits type with the cursor as private, and when initiating the cursor, that overwrites the XSELINUX context. |
| A flaw was found in X.Org server. Both DeviceFocusEvent and the XIQueryPointer reply contain a bit for each logical button currently down. Buttons can be arbitrarily mapped to any value up to 255, but the X.Org Server was only allocating space for the device's particular number of buttons, leading to a heap overflow if a bigger value was used. |
| A flaw was found in xorg-server. Querying or changing XKB button actions such as moving from a touchpad to a mouse can result in out-of-bounds memory reads and writes. This may allow local privilege escalation or possible remote code execution in cases where X11 forwarding is involved. |
| A buffer overflow was discovered in the GNU C Library's dynamic loader ld.so while processing the GLIBC_TUNABLES environment variable. This issue could allow a local attacker to use maliciously crafted GLIBC_TUNABLES environment variables when launching binaries with SUID permission to execute code with elevated privileges. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix max_sge overflow in smb_extract_folioq_to_rdma()
This fixes the following problem:
[ 749.901015] [ T8673] run fstests cifs/001 at 2025-06-17 09:40:30
[ 750.346409] [ T9870] ==================================================================
[ 750.346814] [ T9870] BUG: KASAN: slab-out-of-bounds in smb_set_sge+0x2cc/0x3b0 [cifs]
[ 750.347330] [ T9870] Write of size 8 at addr ffff888011082890 by task xfs_io/9870
[ 750.347705] [ T9870]
[ 750.348077] [ T9870] CPU: 0 UID: 0 PID: 9870 Comm: xfs_io Kdump: loaded Not tainted 6.16.0-rc2-metze.02+ #1 PREEMPT(voluntary)
[ 750.348082] [ T9870] Hardware name: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006
[ 750.348085] [ T9870] Call Trace:
[ 750.348086] [ T9870] <TASK>
[ 750.348088] [ T9870] dump_stack_lvl+0x76/0xa0
[ 750.348106] [ T9870] print_report+0xd1/0x640
[ 750.348116] [ T9870] ? __pfx__raw_spin_lock_irqsave+0x10/0x10
[ 750.348120] [ T9870] ? kasan_complete_mode_report_info+0x26/0x210
[ 750.348124] [ T9870] kasan_report+0xe7/0x130
[ 750.348128] [ T9870] ? smb_set_sge+0x2cc/0x3b0 [cifs]
[ 750.348262] [ T9870] ? smb_set_sge+0x2cc/0x3b0 [cifs]
[ 750.348377] [ T9870] __asan_report_store8_noabort+0x17/0x30
[ 750.348381] [ T9870] smb_set_sge+0x2cc/0x3b0 [cifs]
[ 750.348496] [ T9870] smbd_post_send_iter+0x1990/0x3070 [cifs]
[ 750.348625] [ T9870] ? __pfx_smbd_post_send_iter+0x10/0x10 [cifs]
[ 750.348741] [ T9870] ? update_stack_state+0x2a0/0x670
[ 750.348749] [ T9870] ? cifs_flush+0x153/0x320 [cifs]
[ 750.348870] [ T9870] ? cifs_flush+0x153/0x320 [cifs]
[ 750.348990] [ T9870] ? update_stack_state+0x2a0/0x670
[ 750.348995] [ T9870] smbd_send+0x58c/0x9c0 [cifs]
[ 750.349117] [ T9870] ? __pfx_smbd_send+0x10/0x10 [cifs]
[ 750.349231] [ T9870] ? unwind_get_return_address+0x65/0xb0
[ 750.349235] [ T9870] ? __pfx_stack_trace_consume_entry+0x10/0x10
[ 750.349242] [ T9870] ? arch_stack_walk+0xa7/0x100
[ 750.349250] [ T9870] ? stack_trace_save+0x92/0xd0
[ 750.349254] [ T9870] __smb_send_rqst+0x931/0xec0 [cifs]
[ 750.349374] [ T9870] ? kernel_text_address+0x173/0x190
[ 750.349379] [ T9870] ? kasan_save_stack+0x39/0x70
[ 750.349382] [ T9870] ? kasan_save_track+0x18/0x70
[ 750.349385] [ T9870] ? __kasan_slab_alloc+0x9d/0xa0
[ 750.349389] [ T9870] ? __pfx___smb_send_rqst+0x10/0x10 [cifs]
[ 750.349508] [ T9870] ? smb2_mid_entry_alloc+0xb4/0x7e0 [cifs]
[ 750.349626] [ T9870] ? cifs_call_async+0x277/0xb00 [cifs]
[ 750.349746] [ T9870] ? cifs_issue_write+0x256/0x610 [cifs]
[ 750.349867] [ T9870] ? netfs_do_issue_write+0xc2/0x340 [netfs]
[ 750.349900] [ T9870] ? netfs_advance_write+0x45b/0x1270 [netfs]
[ 750.349929] [ T9870] ? netfs_write_folio+0xd6c/0x1be0 [netfs]
[ 750.349958] [ T9870] ? netfs_writepages+0x2e9/0xa80 [netfs]
[ 750.349987] [ T9870] ? do_writepages+0x21f/0x590
[ 750.349993] [ T9870] ? filemap_fdatawrite_wbc+0xe1/0x140
[ 750.349997] [ T9870] ? entry_SYSCALL_64_after_hwframe+0x76/0x7e
[ 750.350002] [ T9870] smb_send_rqst+0x22e/0x2f0 [cifs]
[ 750.350131] [ T9870] ? __pfx_smb_send_rqst+0x10/0x10 [cifs]
[ 750.350255] [ T9870] ? local_clock_noinstr+0xe/0xd0
[ 750.350261] [ T9870] ? kasan_save_alloc_info+0x37/0x60
[ 750.350268] [ T9870] ? __kasan_check_write+0x14/0x30
[ 750.350271] [ T9870] ? _raw_spin_lock+0x81/0xf0
[ 750.350275] [ T9870] ? __pfx__raw_spin_lock+0x10/0x10
[ 750.350278] [ T9870] ? smb2_setup_async_request+0x293/0x580 [cifs]
[ 750.350398] [ T9870] cifs_call_async+0x477/0xb00 [cifs]
[ 750.350518] [ T9870] ? __pfx_smb2_writev_callback+0x10/0x10 [cifs]
[ 750.350636] [ T9870] ? __pfx_cifs_call_async+0x10/0x10 [cifs]
[ 750.350756] [ T9870] ? __pfx__raw_spin_lock+0x10/0x10
[ 750.350760] [ T9870] ? __kasan_check_write+0x14/0x30
[ 750.350763] [ T98
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
HID: appletb-kbd: fix memory corruption of input_handler_list
In appletb_kbd_probe an input handler is initialised and then registered
with input core through input_register_handler(). When this happens input
core will add the input handler (specifically its node) to the global
input_handler_list. The input_handler_list is central to the functionality
of input core and is traversed in various places in input core. An example
of this is when a new input device is plugged in and gets registered with
input core.
The input_handler in probe is allocated as device managed memory. If a
probe failure occurs after input_register_handler() the input_handler
memory is freed, yet it will remain in the input_handler_list. This
effectively means the input_handler_list contains a dangling pointer
to data belonging to a freed input handler.
This causes an issue when any other input device is plugged in - in my
case I had an old PixArt HP USB optical mouse and I decided to
plug it in after a failure occurred after input_register_handler().
This lead to the registration of this input device via
input_register_device which involves traversing over every handler
in the corrupted input_handler_list and calling input_attach_handler(),
giving each handler a chance to bind to newly registered device.
The core of this bug is a UAF which causes memory corruption of
input_handler_list and to fix it we must ensure the input handler is
unregistered from input core, this is done through
input_unregister_handler().
[ 63.191597] ==================================================================
[ 63.192094] BUG: KASAN: slab-use-after-free in input_attach_handler.isra.0+0x1a9/0x1e0
[ 63.192094] Read of size 8 at addr ffff888105ea7c80 by task kworker/0:2/54
[ 63.192094]
[ 63.192094] CPU: 0 UID: 0 PID: 54 Comm: kworker/0:2 Not tainted 6.16.0-rc2-00321-g2aa6621d
[ 63.192094] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.164
[ 63.192094] Workqueue: usb_hub_wq hub_event
[ 63.192094] Call Trace:
[ 63.192094] <TASK>
[ 63.192094] dump_stack_lvl+0x53/0x70
[ 63.192094] print_report+0xce/0x670
[ 63.192094] kasan_report+0xce/0x100
[ 63.192094] input_attach_handler.isra.0+0x1a9/0x1e0
[ 63.192094] input_register_device+0x76c/0xd00
[ 63.192094] hidinput_connect+0x686d/0xad60
[ 63.192094] hid_connect+0xf20/0x1b10
[ 63.192094] hid_hw_start+0x83/0x100
[ 63.192094] hid_device_probe+0x2d1/0x680
[ 63.192094] really_probe+0x1c3/0x690
[ 63.192094] __driver_probe_device+0x247/0x300
[ 63.192094] driver_probe_device+0x49/0x210
[ 63.192094] __device_attach_driver+0x160/0x320
[ 63.192094] bus_for_each_drv+0x10f/0x190
[ 63.192094] __device_attach+0x18e/0x370
[ 63.192094] bus_probe_device+0x123/0x170
[ 63.192094] device_add+0xd4d/0x1460
[ 63.192094] hid_add_device+0x30b/0x910
[ 63.192094] usbhid_probe+0x920/0xe00
[ 63.192094] usb_probe_interface+0x363/0x9a0
[ 63.192094] really_probe+0x1c3/0x690
[ 63.192094] __driver_probe_device+0x247/0x300
[ 63.192094] driver_probe_device+0x49/0x210
[ 63.192094] __device_attach_driver+0x160/0x320
[ 63.192094] bus_for_each_drv+0x10f/0x190
[ 63.192094] __device_attach+0x18e/0x370
[ 63.192094] bus_probe_device+0x123/0x170
[ 63.192094] device_add+0xd4d/0x1460
[ 63.192094] usb_set_configuration+0xd14/0x1880
[ 63.192094] usb_generic_driver_probe+0x78/0xb0
[ 63.192094] usb_probe_device+0xaa/0x2e0
[ 63.192094] really_probe+0x1c3/0x690
[ 63.192094] __driver_probe_device+0x247/0x300
[ 63.192094] driver_probe_device+0x49/0x210
[ 63.192094] __device_attach_driver+0x160/0x320
[ 63.192094] bus_for_each_drv+0x10f/0x190
[ 63.192094] __device_attach+0x18e/0x370
[ 63.192094] bus_probe_device+0x123/0x170
[ 63.192094] device_add+0xd4d/0x1460
[ 63.192094] usb_new_device+0x7b4/0x1000
[ 63.192094] hub_event+0x234d/0x3
---truncated--- |