Search

Search Results (328357 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-22921 2 Debian, Ffmpeg 2 Debian Linux, Ffmpeg 2026-01-12 6.5 Medium
FFmpeg git-master,N-113007-g8d24a28d06 was discovered to contain a segmentation violation via the component /libavcodec/jpeg2000dec.c.
CVE-2023-34976 1 Qnap 1 Video Station 2026-01-12 10 Critical
A SQL injection vulnerability has been reported to affect Video Station. If exploited, the vulnerability could allow authenticated users to inject malicious code via a network. We have already fixed the vulnerability in the following version: Video Station 5.7.0 ( 2023/07/27 ) and later
CVE-2023-34975 1 Qnap 1 Video Station 2026-01-12 6.6 Medium
An OS command injection vulnerability has been reported to affect several QNAP operating system versions. If exploited, the vulnerability could allow authenticated administrators to execute commands via a network. QuTScloud is not affected. We have already fixed the vulnerability in the following versions: QuTS hero h4.5.4.2626 build 20231225 and later QTS 4.5.4.2627 build 20231225 and later
CVE-2025-50572 2026-01-12 8.8 High
Archer 6.11.00204.10014 allows attackers to execute arbitrary code via crafted system inputs that would be exported into the CSV and be executed after the user opened the file with compatible applications. NOTE: the Supplier does not accept this as a valid vulnerability report against their product.
CVE-2025-20801 2 Google, Mediatek 11 Android, Mt6878, Mt6897 and 8 more 2026-01-12 7 High
In seninf, there is a possible memory corruption due to a race condition. This could lead to local escalation of privilege if a malicious actor has already obtained the System privilege. User interaction is not needed for exploitation. Patch ID: ALPS10251210; Issue ID: MSV-4926.
CVE-2025-20786 2 Google, Mediatek 46 Android, Mt6739, Mt6761 and 43 more 2026-01-12 6.7 Medium
In display, there is a possible memory corruption due to use after free. This could lead to local escalation of privilege if a malicious actor has already obtained the System privilege. User interaction is not needed for exploitation. Patch ID: ALPS10149882; Issue ID: MSV-4673.
CVE-2025-20781 2 Google, Mediatek 46 Android, Mt6739, Mt6761 and 43 more 2026-01-12 7.8 High
In display, there is a possible memory corruption due to use after free. This could lead to local escalation of privilege if a malicious actor has already obtained the System privilege. User interaction is not needed for exploitation. Patch ID: ALPS10182914; Issue ID: MSV-4699.
CVE-2025-20775 2 Google, Mediatek 46 Android, Mt6739, Mt6761 and 43 more 2026-01-12 6.7 Medium
In display, there is a possible memory corruption due to use after free. This could lead to local escalation of privilege if a malicious actor has already obtained the System privilege. User interaction is not needed for exploitation. Patch ID: ALPS10182914; Issue ID: MSV-4795.
CVE-2025-20773 2 Google, Mediatek 32 Android, Mt2718, Mt6739 and 29 more 2026-01-12 6.7 Medium
In display, there is a possible memory corruption due to use after free. This could lead to local escalation of privilege if a malicious actor has already obtained the System privilege. User interaction is not needed for exploitation. Patch ID: ALPS10196993; Issue ID: MSV-4797.
CVE-2025-20772 2 Google, Mediatek 32 Android, Mt2718, Mt6739 and 29 more 2026-01-12 6.7 Medium
In display, there is a possible memory corruption due to use after free. This could lead to local escalation of privilege if a malicious actor has already obtained the System privilege. User interaction is not needed for exploitation. Patch ID: ALPS10182914; Issue ID: MSV-4795.
CVE-2025-13609 1 Redhat 4 Enterprise Linux, Enterprise Linux Eus, Rhel E4s and 1 more 2026-01-12 8.2 High
A vulnerability has been identified in keylime where an attacker can exploit this flaw by registering a new agent using a different Trusted Platform Module (TPM) device but claiming an existing agent's unique identifier (UUID). This action overwrites the legitimate agent's identity, enabling the attacker to impersonate the compromised agent and potentially bypass security controls.
CVE-2025-68766 1 Linux 1 Linux Kernel 2026-01-11 N/A
In the Linux kernel, the following vulnerability has been resolved: irqchip/mchp-eic: Fix error code in mchp_eic_domain_alloc() If irq_domain_translate_twocell() sets "hwirq" to >= MCHP_EIC_NIRQ (2) then it results in an out of bounds access. The code checks for invalid values, but doesn't set the error code. Return -EINVAL in that case, instead of returning success.
CVE-2025-68763 1 Linux 1 Linux Kernel 2026-01-11 N/A
In the Linux kernel, the following vulnerability has been resolved: crypto: starfive - Correctly handle return of sg_nents_for_len The return value of sg_nents_for_len was assigned to an unsigned long in starfive_hash_digest, causing negative error codes to be converted to large positive integers. Add error checking for sg_nents_for_len and return immediately on failure to prevent potential buffer overflows.
CVE-2025-68756 1 Linux 1 Linux Kernel 2026-01-11 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: block: Use RCU in blk_mq_[un]quiesce_tagset() instead of set->tag_list_lock blk_mq_{add,del}_queue_tag_set() functions add and remove queues from tagset, the functions make sure that tagset and queues are marked as shared when two or more queues are attached to the same tagset. Initially a tagset starts as unshared and when the number of added queues reaches two, blk_mq_add_queue_tag_set() marks it as shared along with all the queues attached to it. When the number of attached queues drops to 1 blk_mq_del_queue_tag_set() need to mark both the tagset and the remaining queues as unshared. Both functions need to freeze current queues in tagset before setting on unsetting BLK_MQ_F_TAG_QUEUE_SHARED flag. While doing so, both functions hold set->tag_list_lock mutex, which makes sense as we do not want queues to be added or deleted in the process. This used to work fine until commit 98d81f0df70c ("nvme: use blk_mq_[un]quiesce_tagset") made the nvme driver quiesce tagset instead of quiscing individual queues. blk_mq_quiesce_tagset() does the job and quiesce the queues in set->tag_list while holding set->tag_list_lock also. This results in deadlock between two threads with these stacktraces: __schedule+0x47c/0xbb0 ? timerqueue_add+0x66/0xb0 schedule+0x1c/0xa0 schedule_preempt_disabled+0xa/0x10 __mutex_lock.constprop.0+0x271/0x600 blk_mq_quiesce_tagset+0x25/0xc0 nvme_dev_disable+0x9c/0x250 nvme_timeout+0x1fc/0x520 blk_mq_handle_expired+0x5c/0x90 bt_iter+0x7e/0x90 blk_mq_queue_tag_busy_iter+0x27e/0x550 ? __blk_mq_complete_request_remote+0x10/0x10 ? __blk_mq_complete_request_remote+0x10/0x10 ? __call_rcu_common.constprop.0+0x1c0/0x210 blk_mq_timeout_work+0x12d/0x170 process_one_work+0x12e/0x2d0 worker_thread+0x288/0x3a0 ? rescuer_thread+0x480/0x480 kthread+0xb8/0xe0 ? kthread_park+0x80/0x80 ret_from_fork+0x2d/0x50 ? kthread_park+0x80/0x80 ret_from_fork_asm+0x11/0x20 __schedule+0x47c/0xbb0 ? xas_find+0x161/0x1a0 schedule+0x1c/0xa0 blk_mq_freeze_queue_wait+0x3d/0x70 ? destroy_sched_domains_rcu+0x30/0x30 blk_mq_update_tag_set_shared+0x44/0x80 blk_mq_exit_queue+0x141/0x150 del_gendisk+0x25a/0x2d0 nvme_ns_remove+0xc9/0x170 nvme_remove_namespaces+0xc7/0x100 nvme_remove+0x62/0x150 pci_device_remove+0x23/0x60 device_release_driver_internal+0x159/0x200 unbind_store+0x99/0xa0 kernfs_fop_write_iter+0x112/0x1e0 vfs_write+0x2b1/0x3d0 ksys_write+0x4e/0xb0 do_syscall_64+0x5b/0x160 entry_SYSCALL_64_after_hwframe+0x4b/0x53 The top stacktrace is showing nvme_timeout() called to handle nvme command timeout. timeout handler is trying to disable the controller and as a first step, it needs to blk_mq_quiesce_tagset() to tell blk-mq not to call queue callback handlers. The thread is stuck waiting for set->tag_list_lock as it tries to walk the queues in set->tag_list. The lock is held by the second thread in the bottom stack which is waiting for one of queues to be frozen. The queue usage counter will drop to zero after nvme_timeout() finishes, and this will not happen because the thread will wait for this mutex forever. Given that [un]quiescing queue is an operation that does not need to sleep, update blk_mq_[un]quiesce_tagset() to use RCU instead of taking set->tag_list_lock, update blk_mq_{add,del}_queue_tag_set() to use RCU safe list operations. Also, delete INIT_LIST_HEAD(&q->tag_set_list) in blk_mq_del_queue_tag_set() because we can not re-initialize it while the list is being traversed under RCU. The deleted queue will not be added/deleted to/from a tagset and it will be freed in blk_free_queue() after the end of RCU grace period.
CVE-2025-68755 1 Linux 1 Linux Kernel 2026-01-11 N/A
In the Linux kernel, the following vulnerability has been resolved: staging: most: remove broken i2c driver The MOST I2C driver has been completely broken for five years without anyone noticing so remove the driver from staging. Specifically, commit 723de0f9171e ("staging: most: remove device from interface structure") started requiring drivers to set the interface device pointer before registration, but the I2C driver was never updated which results in a NULL pointer dereference if anyone ever tries to probe it.
CVE-2025-68753 1 Linux 1 Linux Kernel 2026-01-11 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ALSA: firewire-motu: add bounds check in put_user loop for DSP events In the DSP event handling code, a put_user() loop copies event data. When the user buffer size is not aligned to 4 bytes, it could overwrite beyond the buffer boundary. Fix by adding a bounds check before put_user().
CVE-2025-68744 1 Linux 1 Linux Kernel 2026-01-11 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Free special fields when update [lru_,]percpu_hash maps As [lru_,]percpu_hash maps support BPF_KPTR_{REF,PERCPU}, missing calls to 'bpf_obj_free_fields()' in 'pcpu_copy_value()' could cause the memory referenced by BPF_KPTR_{REF,PERCPU} fields to be held until the map gets freed. Fix this by calling 'bpf_obj_free_fields()' after 'copy_map_value[,_long]()' in 'pcpu_copy_value()'.
CVE-2025-68742 1 Linux 1 Linux Kernel 2026-01-11 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix invalid prog->stats access when update_effective_progs fails Syzkaller triggers an invalid memory access issue following fault injection in update_effective_progs. The issue can be described as follows: __cgroup_bpf_detach update_effective_progs compute_effective_progs bpf_prog_array_alloc <-- fault inject purge_effective_progs /* change to dummy_bpf_prog */ array->items[index] = &dummy_bpf_prog.prog ---softirq start--- __do_softirq ... __cgroup_bpf_run_filter_skb __bpf_prog_run_save_cb bpf_prog_run stats = this_cpu_ptr(prog->stats) /* invalid memory access */ flags = u64_stats_update_begin_irqsave(&stats->syncp) ---softirq end--- static_branch_dec(&cgroup_bpf_enabled_key[atype]) The reason is that fault injection caused update_effective_progs to fail and then changed the original prog into dummy_bpf_prog.prog in purge_effective_progs. Then a softirq came, and accessing the members of dummy_bpf_prog.prog in the softirq triggers invalid mem access. To fix it, skip updating stats when stats is NULL.
CVE-2025-68741 1 Linux 1 Linux Kernel 2026-01-11 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix improper freeing of purex item In qla2xxx_process_purls_iocb(), an item is allocated via qla27xx_copy_multiple_pkt(), which internally calls qla24xx_alloc_purex_item(). The qla24xx_alloc_purex_item() function may return a pre-allocated item from a per-adapter pool for small allocations, instead of dynamically allocating memory with kzalloc(). An error handling path in qla2xxx_process_purls_iocb() incorrectly uses kfree() to release the item. If the item was from the pre-allocated pool, calling kfree() on it is a bug that can lead to memory corruption. Fix this by using the correct deallocation function, qla24xx_free_purex_item(), which properly handles both dynamically allocated and pre-allocated items.
CVE-2025-68380 1 Linux 1 Linux Kernel 2026-01-11 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: ath11k: fix peer HE MCS assignment In ath11k_wmi_send_peer_assoc_cmd(), peer's transmit MCS is sent to firmware as receive MCS while peer's receive MCS sent as transmit MCS, which goes against firmwire's definition. While connecting to a misbehaved AP that advertises 0xffff (meaning not supported) for 160 MHz transmit MCS map, firmware crashes due to 0xffff is assigned to he_mcs->rx_mcs_set field. Ext Tag: HE Capabilities [...] Supported HE-MCS and NSS Set [...] Rx and Tx MCS Maps 160 MHz [...] Tx HE-MCS Map 160 MHz: 0xffff Swap the assignment to fix this issue. As the HE rate control mask is meant to limit our own transmit MCS, it needs to go via he_mcs->rx_mcs_set field. With the aforementioned swapping done, change is needed as well to apply it to the peer's receive MCS. Tested-on: WCN6855 hw2.1 PCI WLAN.HSP.1.1-03125-QCAHSPSWPL_V1_V2_SILICONZ_LITE-3.6510.41 Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.4.1-00199-QCAHKSWPL_SILICONZ-1