Search Results (16621 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-40327 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: perf/core: Fix system hang caused by cpu-clock usage cpu-clock usage by the async-profiler tool can trigger a system hang, which got bisected back to the following commit by Octavia Togami: 18dbcbfabfff ("perf: Fix the POLL_HUP delivery breakage") causes this issue The root cause of the hang is that cpu-clock is a special type of SW event which relies on hrtimers. The __perf_event_overflow() callback is invoked from the hrtimer handler for cpu-clock events, and __perf_event_overflow() tries to call cpu_clock_event_stop() to stop the event, which calls htimer_cancel() to cancel the hrtimer. But that's a recursion into the hrtimer code from a hrtimer handler, which (unsurprisingly) deadlocks. To fix this bug, use hrtimer_try_to_cancel() instead, and set the PERF_HES_STOPPED flag, which causes perf_swevent_hrtimer() to stop the event once it sees the PERF_HES_STOPPED flag. [ mingo: Fixed the comments and improved the changelog. ]
CVE-2023-53824 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: netlink: annotate lockless accesses to nlk->max_recvmsg_len syzbot reported a data-race in data-race in netlink_recvmsg() [1] Indeed, netlink_recvmsg() can be run concurrently, and netlink_dump() also needs protection. [1] BUG: KCSAN: data-race in netlink_recvmsg / netlink_recvmsg read to 0xffff888141840b38 of 8 bytes by task 23057 on cpu 0: netlink_recvmsg+0xea/0x730 net/netlink/af_netlink.c:1988 sock_recvmsg_nosec net/socket.c:1017 [inline] sock_recvmsg net/socket.c:1038 [inline] __sys_recvfrom+0x1ee/0x2e0 net/socket.c:2194 __do_sys_recvfrom net/socket.c:2212 [inline] __se_sys_recvfrom net/socket.c:2208 [inline] __x64_sys_recvfrom+0x78/0x90 net/socket.c:2208 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd write to 0xffff888141840b38 of 8 bytes by task 23037 on cpu 1: netlink_recvmsg+0x114/0x730 net/netlink/af_netlink.c:1989 sock_recvmsg_nosec net/socket.c:1017 [inline] sock_recvmsg net/socket.c:1038 [inline] ____sys_recvmsg+0x156/0x310 net/socket.c:2720 ___sys_recvmsg net/socket.c:2762 [inline] do_recvmmsg+0x2e5/0x710 net/socket.c:2856 __sys_recvmmsg net/socket.c:2935 [inline] __do_sys_recvmmsg net/socket.c:2958 [inline] __se_sys_recvmmsg net/socket.c:2951 [inline] __x64_sys_recvmmsg+0xe2/0x160 net/socket.c:2951 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd value changed: 0x0000000000000000 -> 0x0000000000001000 Reported by Kernel Concurrency Sanitizer on: CPU: 1 PID: 23037 Comm: syz-executor.2 Not tainted 6.3.0-rc4-syzkaller-00195-g5a57b48fdfcb #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/02/2023
CVE-2023-53826 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ubi: Fix UAF wear-leveling entry in eraseblk_count_seq_show() Wear-leveling entry could be freed in error path, which may be accessed again in eraseblk_count_seq_show(), for example: __erase_worker eraseblk_count_seq_show wl = ubi->lookuptbl[*block_number] if (wl) wl_entry_destroy ubi->lookuptbl[e->pnum] = NULL kmem_cache_free(ubi_wl_entry_slab, e) erase_count = wl->ec // UAF! Wear-leveling entry updating/accessing in ubi->lookuptbl should be protected by ubi->wl_lock, fix it by adding ubi->wl_lock to serialize wl entry accessing between wl_entry_destroy() and eraseblk_count_seq_show(). Fetch a reproducer in [Link].
CVE-2023-53852 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nvme-core: fix memory leak in dhchap_secret_store Free dhchap_secret in nvme_ctrl_dhchap_secret_store() before we return fix following kmemleack:- unreferenced object 0xffff8886376ea800 (size 64): comm "check", pid 22048, jiffies 4344316705 (age 92.199s) hex dump (first 32 bytes): 44 48 48 43 2d 31 3a 30 30 3a 6e 78 72 35 4b 67 DHHC-1:00:nxr5Kg 75 58 34 75 6f 41 78 73 4a 61 34 63 2f 68 75 4c uX4uoAxsJa4c/huL backtrace: [<0000000030ce5d4b>] __kmalloc+0x4b/0x130 [<000000009be1cdc1>] nvme_ctrl_dhchap_secret_store+0x8f/0x160 [nvme_core] [<00000000ac06c96a>] kernfs_fop_write_iter+0x12b/0x1c0 [<00000000437e7ced>] vfs_write+0x2ba/0x3c0 [<00000000f9491baf>] ksys_write+0x5f/0xe0 [<000000001c46513d>] do_syscall_64+0x3b/0x90 [<00000000ecf348fe>] entry_SYSCALL_64_after_hwframe+0x72/0xdc unreferenced object 0xffff8886376eaf00 (size 64): comm "check", pid 22048, jiffies 4344316736 (age 92.168s) hex dump (first 32 bytes): 44 48 48 43 2d 31 3a 30 30 3a 6e 78 72 35 4b 67 DHHC-1:00:nxr5Kg 75 58 34 75 6f 41 78 73 4a 61 34 63 2f 68 75 4c uX4uoAxsJa4c/huL backtrace: [<0000000030ce5d4b>] __kmalloc+0x4b/0x130 [<000000009be1cdc1>] nvme_ctrl_dhchap_secret_store+0x8f/0x160 [nvme_core] [<00000000ac06c96a>] kernfs_fop_write_iter+0x12b/0x1c0 [<00000000437e7ced>] vfs_write+0x2ba/0x3c0 [<00000000f9491baf>] ksys_write+0x5f/0xe0 [<000000001c46513d>] do_syscall_64+0x3b/0x90 [<00000000ecf348fe>] entry_SYSCALL_64_after_hwframe+0x72/0xdc
CVE-2023-53854 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ASoC: mediatek: mt8186: Fix use-after-free in driver remove path When devm runs function in the "remove" path for a device it runs them in the reverse order. That means that if you have parts of your driver that aren't using devm or are using "roll your own" devm w/ devm_add_action_or_reset() you need to keep that in mind. The mt8186 audio driver didn't quite get this right. Specifically, in mt8186_init_clock() it called mt8186_audsys_clk_register() and then went on to call a bunch of other devm function. The caller of mt8186_init_clock() used devm_add_action_or_reset() to call mt8186_deinit_clock() but, because of the intervening devm functions, the order was wrong. Specifically at probe time, the order was: 1. mt8186_audsys_clk_register() 2. afe_priv->clk = devm_kcalloc(...) 3. afe_priv->clk[i] = devm_clk_get(...) At remove time, the order (which should have been 3, 2, 1) was: 1. mt8186_audsys_clk_unregister() 3. Free all of afe_priv->clk[i] 2. Free afe_priv->clk The above seemed to be causing a use-after-free. Luckily, it's easy to fix this by simply using devm more correctly. Let's move the devm_add_action_or_reset() to the right place. In addition to fixing the use-after-free, code inspection shows that this fixes a leak (missing call to mt8186_audsys_clk_unregister()) that would have happened if any of the syscon_regmap_lookup_by_phandle() calls in mt8186_init_clock() had failed.
CVE-2023-53856 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: of: overlay: Call of_changeset_init() early When of_overlay_fdt_apply() fails, the changeset may be partially applied, and the caller is still expected to call of_overlay_remove() to clean up this partial state. However, of_overlay_apply() calls of_resolve_phandles() before init_overlay_changeset(). Hence if the overlay fails to apply due to an unresolved symbol, the overlay_changeset.cset.entries list is still uninitialized, and cleanup will crash with a NULL-pointer dereference in overlay_removal_is_ok(). Fix this by moving the call to of_changeset_init() from init_overlay_changeset() to of_overlay_fdt_apply(), where all other early initialization is done.
CVE-2023-53858 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tty: serial: samsung_tty: Fix a memory leak in s3c24xx_serial_getclk() in case of error If clk_get_rate() fails, the clk that has just been allocated needs to be freed.
CVE-2023-53857 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: bpf_sk_storage: Fix invalid wait context lockdep report './test_progs -t test_local_storage' reported a splat: [ 27.137569] ============================= [ 27.138122] [ BUG: Invalid wait context ] [ 27.138650] 6.5.0-03980-gd11ae1b16b0a #247 Tainted: G O [ 27.139542] ----------------------------- [ 27.140106] test_progs/1729 is trying to lock: [ 27.140713] ffff8883ef047b88 (stock_lock){-.-.}-{3:3}, at: local_lock_acquire+0x9/0x130 [ 27.141834] other info that might help us debug this: [ 27.142437] context-{5:5} [ 27.142856] 2 locks held by test_progs/1729: [ 27.143352] #0: ffffffff84bcd9c0 (rcu_read_lock){....}-{1:3}, at: rcu_lock_acquire+0x4/0x40 [ 27.144492] #1: ffff888107deb2c0 (&storage->lock){..-.}-{2:2}, at: bpf_local_storage_update+0x39e/0x8e0 [ 27.145855] stack backtrace: [ 27.146274] CPU: 0 PID: 1729 Comm: test_progs Tainted: G O 6.5.0-03980-gd11ae1b16b0a #247 [ 27.147550] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [ 27.149127] Call Trace: [ 27.149490] <TASK> [ 27.149867] dump_stack_lvl+0x130/0x1d0 [ 27.152609] dump_stack+0x14/0x20 [ 27.153131] __lock_acquire+0x1657/0x2220 [ 27.153677] lock_acquire+0x1b8/0x510 [ 27.157908] local_lock_acquire+0x29/0x130 [ 27.159048] obj_cgroup_charge+0xf4/0x3c0 [ 27.160794] slab_pre_alloc_hook+0x28e/0x2b0 [ 27.161931] __kmem_cache_alloc_node+0x51/0x210 [ 27.163557] __kmalloc+0xaa/0x210 [ 27.164593] bpf_map_kzalloc+0xbc/0x170 [ 27.165147] bpf_selem_alloc+0x130/0x510 [ 27.166295] bpf_local_storage_update+0x5aa/0x8e0 [ 27.167042] bpf_fd_sk_storage_update_elem+0xdb/0x1a0 [ 27.169199] bpf_map_update_value+0x415/0x4f0 [ 27.169871] map_update_elem+0x413/0x550 [ 27.170330] __sys_bpf+0x5e9/0x640 [ 27.174065] __x64_sys_bpf+0x80/0x90 [ 27.174568] do_syscall_64+0x48/0xa0 [ 27.175201] entry_SYSCALL_64_after_hwframe+0x6e/0xd8 [ 27.175932] RIP: 0033:0x7effb40e41ad [ 27.176357] Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d8 [ 27.179028] RSP: 002b:00007ffe64c21fc8 EFLAGS: 00000202 ORIG_RAX: 0000000000000141 [ 27.180088] RAX: ffffffffffffffda RBX: 00007ffe64c22768 RCX: 00007effb40e41ad [ 27.181082] RDX: 0000000000000020 RSI: 00007ffe64c22008 RDI: 0000000000000002 [ 27.182030] RBP: 00007ffe64c21ff0 R08: 0000000000000000 R09: 00007ffe64c22788 [ 27.183038] R10: 0000000000000064 R11: 0000000000000202 R12: 0000000000000000 [ 27.184006] R13: 00007ffe64c22788 R14: 00007effb42a1000 R15: 0000000000000000 [ 27.184958] </TASK> It complains about acquiring a local_lock while holding a raw_spin_lock. It means it should not allocate memory while holding a raw_spin_lock since it is not safe for RT. raw_spin_lock is needed because bpf_local_storage supports tracing context. In particular for task local storage, it is easy to get a "current" task PTR_TO_BTF_ID in tracing bpf prog. However, task (and cgroup) local storage has already been moved to bpf mem allocator which can be used after raw_spin_lock. The splat is for the sk storage. For sk (and inode) storage, it has not been moved to bpf mem allocator. Using raw_spin_lock or not, kzalloc(GFP_ATOMIC) could theoretically be unsafe in tracing context. However, the local storage helper requires a verifier accepted sk pointer (PTR_TO_BTF_ID), it is hypothetical if that (mean running a bpf prog in a kzalloc unsafe context and also able to hold a verifier accepted sk pointer) could happen. This patch avoids kzalloc after raw_spin_lock to silent the splat. There is an existing kzalloc before the raw_spin_lock. At that point, a kzalloc is very likely required because a lookup has just been done before. Thus, this patch always does the kzalloc before acq ---truncated---
CVE-2023-53795 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: iommufd: IOMMUFD_DESTROY should not increase the refcount syzkaller found a race where IOMMUFD_DESTROY increments the refcount: obj = iommufd_get_object(ucmd->ictx, cmd->id, IOMMUFD_OBJ_ANY); if (IS_ERR(obj)) return PTR_ERR(obj); iommufd_ref_to_users(obj); /* See iommufd_ref_to_users() */ if (!iommufd_object_destroy_user(ucmd->ictx, obj)) As part of the sequence to join the two existing primitives together. Allowing the refcount the be elevated without holding the destroy_rwsem violates the assumption that all temporary refcount elevations are protected by destroy_rwsem. Racing IOMMUFD_DESTROY with iommufd_object_destroy_user() will cause spurious failures: WARNING: CPU: 0 PID: 3076 at drivers/iommu/iommufd/device.c:477 iommufd_access_destroy+0x18/0x20 drivers/iommu/iommufd/device.c:478 Modules linked in: CPU: 0 PID: 3076 Comm: syz-executor.0 Not tainted 6.3.0-rc1-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/03/2023 RIP: 0010:iommufd_access_destroy+0x18/0x20 drivers/iommu/iommufd/device.c:477 Code: e8 3d 4e 00 00 84 c0 74 01 c3 0f 0b c3 0f 1f 44 00 00 f3 0f 1e fa 48 89 fe 48 8b bf a8 00 00 00 e8 1d 4e 00 00 84 c0 74 01 c3 <0f> 0b c3 0f 1f 44 00 00 41 57 41 56 41 55 4c 8d ae d0 00 00 00 41 RSP: 0018:ffffc90003067e08 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff888109ea0300 RCX: 0000000000000000 RDX: 0000000000000001 RSI: 0000000000000000 RDI: 00000000ffffffff RBP: 0000000000000004 R08: 0000000000000000 R09: ffff88810bbb3500 R10: ffff88810bbb3e48 R11: 0000000000000000 R12: ffffc90003067e88 R13: ffffc90003067ea8 R14: ffff888101249800 R15: 00000000fffffffe FS: 00007ff7254fe6c0(0000) GS:ffff888237c00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000555557262da8 CR3: 000000010a6fd000 CR4: 0000000000350ef0 Call Trace: <TASK> iommufd_test_create_access drivers/iommu/iommufd/selftest.c:596 [inline] iommufd_test+0x71c/0xcf0 drivers/iommu/iommufd/selftest.c:813 iommufd_fops_ioctl+0x10f/0x1b0 drivers/iommu/iommufd/main.c:337 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:870 [inline] __se_sys_ioctl fs/ioctl.c:856 [inline] __x64_sys_ioctl+0x84/0xc0 fs/ioctl.c:856 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x38/0x80 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd The solution is to not increment the refcount on the IOMMUFD_DESTROY path at all. Instead use the xa_lock to serialize everything. The refcount check == 1 and xa_erase can be done under a single critical region. This avoids the need for any refcount incrementing. It has the downside that if userspace races destroy with other operations it will get an EBUSY instead of waiting, but this is kind of racing is already dangerous.
CVE-2023-53863 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: netlink: do not hard code device address lenth in fdb dumps syzbot reports that some netdev devices do not have a six bytes address [1] Replace ETH_ALEN by dev->addr_len. [1] (Case of a device where dev->addr_len = 4) BUG: KMSAN: kernel-infoleak in instrument_copy_to_user include/linux/instrumented.h:114 [inline] BUG: KMSAN: kernel-infoleak in copyout+0xb8/0x100 lib/iov_iter.c:169 instrument_copy_to_user include/linux/instrumented.h:114 [inline] copyout+0xb8/0x100 lib/iov_iter.c:169 _copy_to_iter+0x6d8/0x1d00 lib/iov_iter.c:536 copy_to_iter include/linux/uio.h:206 [inline] simple_copy_to_iter+0x68/0xa0 net/core/datagram.c:513 __skb_datagram_iter+0x123/0xdc0 net/core/datagram.c:419 skb_copy_datagram_iter+0x5c/0x200 net/core/datagram.c:527 skb_copy_datagram_msg include/linux/skbuff.h:3960 [inline] netlink_recvmsg+0x4ae/0x15a0 net/netlink/af_netlink.c:1970 sock_recvmsg_nosec net/socket.c:1019 [inline] sock_recvmsg net/socket.c:1040 [inline] ____sys_recvmsg+0x283/0x7f0 net/socket.c:2722 ___sys_recvmsg+0x223/0x840 net/socket.c:2764 do_recvmmsg+0x4f9/0xfd0 net/socket.c:2858 __sys_recvmmsg net/socket.c:2937 [inline] __do_sys_recvmmsg net/socket.c:2960 [inline] __se_sys_recvmmsg net/socket.c:2953 [inline] __x64_sys_recvmmsg+0x397/0x490 net/socket.c:2953 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd Uninit was stored to memory at: __nla_put lib/nlattr.c:1009 [inline] nla_put+0x1c6/0x230 lib/nlattr.c:1067 nlmsg_populate_fdb_fill+0x2b8/0x600 net/core/rtnetlink.c:4071 nlmsg_populate_fdb net/core/rtnetlink.c:4418 [inline] ndo_dflt_fdb_dump+0x616/0x840 net/core/rtnetlink.c:4456 rtnl_fdb_dump+0x14ff/0x1fc0 net/core/rtnetlink.c:4629 netlink_dump+0x9d1/0x1310 net/netlink/af_netlink.c:2268 netlink_recvmsg+0xc5c/0x15a0 net/netlink/af_netlink.c:1995 sock_recvmsg_nosec+0x7a/0x120 net/socket.c:1019 ____sys_recvmsg+0x664/0x7f0 net/socket.c:2720 ___sys_recvmsg+0x223/0x840 net/socket.c:2764 do_recvmmsg+0x4f9/0xfd0 net/socket.c:2858 __sys_recvmmsg net/socket.c:2937 [inline] __do_sys_recvmmsg net/socket.c:2960 [inline] __se_sys_recvmmsg net/socket.c:2953 [inline] __x64_sys_recvmmsg+0x397/0x490 net/socket.c:2953 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd Uninit was created at: slab_post_alloc_hook+0x12d/0xb60 mm/slab.h:716 slab_alloc_node mm/slub.c:3451 [inline] __kmem_cache_alloc_node+0x4ff/0x8b0 mm/slub.c:3490 kmalloc_trace+0x51/0x200 mm/slab_common.c:1057 kmalloc include/linux/slab.h:559 [inline] __hw_addr_create net/core/dev_addr_lists.c:60 [inline] __hw_addr_add_ex+0x2e5/0x9e0 net/core/dev_addr_lists.c:118 __dev_mc_add net/core/dev_addr_lists.c:867 [inline] dev_mc_add+0x9a/0x130 net/core/dev_addr_lists.c:885 igmp6_group_added+0x267/0xbc0 net/ipv6/mcast.c:680 ipv6_mc_up+0x296/0x3b0 net/ipv6/mcast.c:2754 ipv6_mc_remap+0x1e/0x30 net/ipv6/mcast.c:2708 addrconf_type_change net/ipv6/addrconf.c:3731 [inline] addrconf_notify+0x4d3/0x1d90 net/ipv6/addrconf.c:3699 notifier_call_chain kernel/notifier.c:93 [inline] raw_notifier_call_chain+0xe4/0x430 kernel/notifier.c:461 call_netdevice_notifiers_info net/core/dev.c:1935 [inline] call_netdevice_notifiers_extack net/core/dev.c:1973 [inline] call_netdevice_notifiers+0x1ee/0x2d0 net/core/dev.c:1987 bond_enslave+0xccd/0x53f0 drivers/net/bonding/bond_main.c:1906 do_set_master net/core/rtnetlink.c:2626 [inline] rtnl_newlink_create net/core/rtnetlink.c:3460 [inline] __rtnl_newlink net/core/rtnetlink.c:3660 [inline] rtnl_newlink+0x378c/0x40e0 net/core/rtnetlink.c:3673 rtnetlink_rcv_msg+0x16a6/0x1840 net/core/rtnetlink.c:6395 netlink_rcv_skb+0x371/0x650 net/netlink/af_netlink.c:2546 rtnetlink_rcv+0x34/0x40 net/core/rtnetlink.c:6413 netlink_unicast_kernel net/netlink/af_netlink.c:1339 [inline] netlink_unicast+0xf28/0x1230 net/netlink/af_ ---truncated---
CVE-2022-50679 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: i40e: Fix DMA mappings leak During reallocation of RX buffers, new DMA mappings are created for those buffers. steps for reproduction: while : do for ((i=0; i<=8160; i=i+32)) do ethtool -G enp130s0f0 rx $i tx $i sleep 0.5 ethtool -g enp130s0f0 done done This resulted in crash: i40e 0000:01:00.1: Unable to allocate memory for the Rx descriptor ring, size=65536 Driver BUG WARNING: CPU: 0 PID: 4300 at net/core/xdp.c:141 xdp_rxq_info_unreg+0x43/0x50 Call Trace: i40e_free_rx_resources+0x70/0x80 [i40e] i40e_set_ringparam+0x27c/0x800 [i40e] ethnl_set_rings+0x1b2/0x290 genl_family_rcv_msg_doit.isra.15+0x10f/0x150 genl_family_rcv_msg+0xb3/0x160 ? rings_fill_reply+0x1a0/0x1a0 genl_rcv_msg+0x47/0x90 ? genl_family_rcv_msg+0x160/0x160 netlink_rcv_skb+0x4c/0x120 genl_rcv+0x24/0x40 netlink_unicast+0x196/0x230 netlink_sendmsg+0x204/0x3d0 sock_sendmsg+0x4c/0x50 __sys_sendto+0xee/0x160 ? handle_mm_fault+0xbe/0x1e0 ? syscall_trace_enter+0x1d3/0x2c0 __x64_sys_sendto+0x24/0x30 do_syscall_64+0x5b/0x1a0 entry_SYSCALL_64_after_hwframe+0x65/0xca RIP: 0033:0x7f5eac8b035b Missing register, driver bug WARNING: CPU: 0 PID: 4300 at net/core/xdp.c:119 xdp_rxq_info_unreg_mem_model+0x69/0x140 Call Trace: xdp_rxq_info_unreg+0x1e/0x50 i40e_free_rx_resources+0x70/0x80 [i40e] i40e_set_ringparam+0x27c/0x800 [i40e] ethnl_set_rings+0x1b2/0x290 genl_family_rcv_msg_doit.isra.15+0x10f/0x150 genl_family_rcv_msg+0xb3/0x160 ? rings_fill_reply+0x1a0/0x1a0 genl_rcv_msg+0x47/0x90 ? genl_family_rcv_msg+0x160/0x160 netlink_rcv_skb+0x4c/0x120 genl_rcv+0x24/0x40 netlink_unicast+0x196/0x230 netlink_sendmsg+0x204/0x3d0 sock_sendmsg+0x4c/0x50 __sys_sendto+0xee/0x160 ? handle_mm_fault+0xbe/0x1e0 ? syscall_trace_enter+0x1d3/0x2c0 __x64_sys_sendto+0x24/0x30 do_syscall_64+0x5b/0x1a0 entry_SYSCALL_64_after_hwframe+0x65/0xca RIP: 0033:0x7f5eac8b035b This was caused because of new buffers with different RX ring count should substitute older ones, but those buffers were freed in i40e_configure_rx_ring and reallocated again with i40e_alloc_rx_bi, thus kfree on rx_bi caused leak of already mapped DMA. Fix this by reallocating ZC with rx_bi_zc struct when BPF program loads. Additionally reallocate back to rx_bi when BPF program unloads. If BPF program is loaded/unloaded and XSK pools are created, reallocate RX queues accordingly in XSP_SETUP_XSK_POOL handler.
CVE-2022-50654 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix panic due to wrong pageattr of im->image In the scenario where livepatch and kretfunc coexist, the pageattr of im->image is rox after arch_prepare_bpf_trampoline in bpf_trampoline_update, and then modify_fentry or register_fentry returns -EAGAIN from bpf_tramp_ftrace_ops_func, the BPF_TRAMP_F_ORIG_STACK flag will be configured, and arch_prepare_bpf_trampoline will be re-executed. At this time, because the pageattr of im->image is rox, arch_prepare_bpf_trampoline will read and write im->image, which causes a fault. as follows: insmod livepatch-sample.ko # samples/livepatch/livepatch-sample.c bpftrace -e 'kretfunc:cmdline_proc_show {}' BUG: unable to handle page fault for address: ffffffffa0206000 PGD 322d067 P4D 322d067 PUD 322e063 PMD 1297e067 PTE d428061 Oops: 0003 [#1] PREEMPT SMP PTI CPU: 2 PID: 270 Comm: bpftrace Tainted: G E K 6.1.0 #5 RIP: 0010:arch_prepare_bpf_trampoline+0xed/0x8c0 RSP: 0018:ffffc90001083ad8 EFLAGS: 00010202 RAX: ffffffffa0206000 RBX: 0000000000000020 RCX: 0000000000000000 RDX: ffffffffa0206001 RSI: ffffffffa0206000 RDI: 0000000000000030 RBP: ffffc90001083b70 R08: 0000000000000066 R09: ffff88800f51b400 R10: 000000002e72c6e5 R11: 00000000d0a15080 R12: ffff8880110a68c8 R13: 0000000000000000 R14: ffff88800f51b400 R15: ffffffff814fec10 FS: 00007f87bc0dc780(0000) GS:ffff88803e600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffffffa0206000 CR3: 0000000010b70000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> bpf_trampoline_update+0x25a/0x6b0 __bpf_trampoline_link_prog+0x101/0x240 bpf_trampoline_link_prog+0x2d/0x50 bpf_tracing_prog_attach+0x24c/0x530 bpf_raw_tp_link_attach+0x73/0x1d0 __sys_bpf+0x100e/0x2570 __x64_sys_bpf+0x1c/0x30 do_syscall_64+0x5b/0x80 entry_SYSCALL_64_after_hwframe+0x63/0xcd With this patch, when modify_fentry or register_fentry returns -EAGAIN from bpf_tramp_ftrace_ops_func, the pageattr of im->image will be reset to nx+rw.
CVE-2023-53836 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf, sockmap: Fix skb refcnt race after locking changes There is a race where skb's from the sk_psock_backlog can be referenced after userspace side has already skb_consumed() the sk_buff and its refcnt dropped to zer0 causing use after free. The flow is the following: while ((skb = skb_peek(&psock->ingress_skb)) sk_psock_handle_Skb(psock, skb, ..., ingress) if (!ingress) ... sk_psock_skb_ingress sk_psock_skb_ingress_enqueue(skb) msg->skb = skb sk_psock_queue_msg(psock, msg) skb_dequeue(&psock->ingress_skb) The sk_psock_queue_msg() puts the msg on the ingress_msg queue. This is what the application reads when recvmsg() is called. An application can read this anytime after the msg is placed on the queue. The recvmsg hook will also read msg->skb and then after user space reads the msg will call consume_skb(skb) on it effectively free'ing it. But, the race is in above where backlog queue still has a reference to the skb and calls skb_dequeue(). If the skb_dequeue happens after the user reads and free's the skb we have a use after free. The !ingress case does not suffer from this problem because it uses sendmsg_*(sk, msg) which does not pass the sk_buff further down the stack. The following splat was observed with 'test_progs -t sockmap_listen': [ 1022.710250][ T2556] general protection fault, ... [...] [ 1022.712830][ T2556] Workqueue: events sk_psock_backlog [ 1022.713262][ T2556] RIP: 0010:skb_dequeue+0x4c/0x80 [ 1022.713653][ T2556] Code: ... [...] [ 1022.720699][ T2556] Call Trace: [ 1022.720984][ T2556] <TASK> [ 1022.721254][ T2556] ? die_addr+0x32/0x80^M [ 1022.721589][ T2556] ? exc_general_protection+0x25a/0x4b0 [ 1022.722026][ T2556] ? asm_exc_general_protection+0x22/0x30 [ 1022.722489][ T2556] ? skb_dequeue+0x4c/0x80 [ 1022.722854][ T2556] sk_psock_backlog+0x27a/0x300 [ 1022.723243][ T2556] process_one_work+0x2a7/0x5b0 [ 1022.723633][ T2556] worker_thread+0x4f/0x3a0 [ 1022.723998][ T2556] ? __pfx_worker_thread+0x10/0x10 [ 1022.724386][ T2556] kthread+0xfd/0x130 [ 1022.724709][ T2556] ? __pfx_kthread+0x10/0x10 [ 1022.725066][ T2556] ret_from_fork+0x2d/0x50 [ 1022.725409][ T2556] ? __pfx_kthread+0x10/0x10 [ 1022.725799][ T2556] ret_from_fork_asm+0x1b/0x30 [ 1022.726201][ T2556] </TASK> To fix we add an skb_get() before passing the skb to be enqueued in the engress queue. This bumps the skb->users refcnt so that consume_skb() and kfree_skb will not immediately free the sk_buff. With this we can be sure the skb is still around when we do the dequeue. Then we just need to decrement the refcnt or free the skb in the backlog case which we do by calling kfree_skb() on the ingress case as well as the sendmsg case. Before locking change from fixes tag we had the sock locked so we couldn't race with user and there was no issue here.
CVE-2023-53800 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ubi: Fix use-after-free when volume resizing failed There is an use-after-free problem reported by KASAN: ================================================================== BUG: KASAN: use-after-free in ubi_eba_copy_table+0x11f/0x1c0 [ubi] Read of size 8 at addr ffff888101eec008 by task ubirsvol/4735 CPU: 2 PID: 4735 Comm: ubirsvol Not tainted 6.1.0-rc1-00003-g84fa3304a7fc-dirty #14 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-1.fc33 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x34/0x44 print_report+0x171/0x472 kasan_report+0xad/0x130 ubi_eba_copy_table+0x11f/0x1c0 [ubi] ubi_resize_volume+0x4f9/0xbc0 [ubi] ubi_cdev_ioctl+0x701/0x1850 [ubi] __x64_sys_ioctl+0x11d/0x170 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 </TASK> When ubi_change_vtbl_record() returns an error in ubi_resize_volume(), "new_eba_tbl" will be freed on error handing path, but it is holded by "vol->eba_tbl" in ubi_eba_replace_table(). It means that the liftcycle of "vol->eba_tbl" and "vol" are different, so when resizing volume in next time, it causing an use-after-free fault. Fix it by not freeing "new_eba_tbl" after it replaced in ubi_eba_replace_table(), while will be freed in next volume resizing.
CVE-2023-53777 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: erofs: kill hooked chains to avoid loops on deduplicated compressed images After heavily stressing EROFS with several images which include a hand-crafted image of repeated patterns for more than 46 days, I found two chains could be linked with each other almost simultaneously and form a loop so that the entire loop won't be submitted. As a consequence, the corresponding file pages will remain locked forever. It can be _only_ observed on data-deduplicated compressed images. For example, consider two chains with five pclusters in total: Chain 1: 2->3->4->5 -- The tail pcluster is 5; Chain 2: 5->1->2 -- The tail pcluster is 2. Chain 2 could link to Chain 1 with pcluster 5; and Chain 1 could link to Chain 2 at the same time with pcluster 2. Since hooked chains are all linked locklessly now, I have no idea how to simply avoid the race. Instead, let's avoid hooked chains completely until I could work out a proper way to fix this and end users finally tell us that it's needed to add it back. Actually, this optimization can be found with multi-threaded workloads (especially even more often on deduplicated compressed images), yet I'm not sure about the overall system impacts of not having this compared with implementation complexity.
CVE-2023-53791 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: md: fix warning for holder mismatch from export_rdev() Commit a1d767191096 ("md: use mddev->external to select holder in export_rdev()") fix the problem that 'claim_rdev' is used for blkdev_get_by_dev() while 'rdev' is used for blkdev_put(). However, if mddev->external is changed from 0 to 1, then 'rdev' is used for blkdev_get_by_dev() while 'claim_rdev' is used for blkdev_put(). And this problem can be reporduced reliably by following: New file: mdadm/tests/23rdev-lifetime devname=${dev0##*/} devt=`cat /sys/block/$devname/dev` pid="" runtime=2 clean_up_test() { pill -9 $pid echo clear > /sys/block/md0/md/array_state } trap 'clean_up_test' EXIT add_by_sysfs() { while true; do echo $devt > /sys/block/md0/md/new_dev done } remove_by_sysfs(){ while true; do echo remove > /sys/block/md0/md/dev-${devname}/state done } echo md0 > /sys/module/md_mod/parameters/new_array || die "create md0 failed" add_by_sysfs & pid="$pid $!" remove_by_sysfs & pid="$pid $!" sleep $runtime exit 0 Test cmd: ./test --save-logs --logdir=/tmp/ --keep-going --dev=loop --tests=23rdev-lifetime Test result: ------------[ cut here ]------------ WARNING: CPU: 0 PID: 960 at block/bdev.c:618 blkdev_put+0x27c/0x330 Modules linked in: multipath md_mod loop CPU: 0 PID: 960 Comm: test Not tainted 6.5.0-rc2-00121-g01e55c376936-dirty #50 RIP: 0010:blkdev_put+0x27c/0x330 Call Trace: <TASK> export_rdev.isra.23+0x50/0xa0 [md_mod] mddev_unlock+0x19d/0x300 [md_mod] rdev_attr_store+0xec/0x190 [md_mod] sysfs_kf_write+0x52/0x70 kernfs_fop_write_iter+0x19a/0x2a0 vfs_write+0x3b5/0x770 ksys_write+0x74/0x150 __x64_sys_write+0x22/0x30 do_syscall_64+0x40/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd Fix the problem by recording if 'rdev' is used as holder.
CVE-2023-53808 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: mwifiex: fix memory leak in mwifiex_histogram_read() Always free the zeroed page on return from 'mwifiex_histogram_read()'.
CVE-2023-53784 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: drm: bridge: dw_hdmi: fix connector access for scdc Commit 5d844091f237 ("drm/scdc-helper: Pimp SCDC debugs") changed the scdc interface to pick up an i2c adapter from a connector instead. However, in the case of dw-hdmi, the wrong connector was being used to pass i2c adapter information, since dw-hdmi's embedded connector structure is only populated when the bridge attachment callback explicitly asks for it. drm-meson is handling connector creation, so this won't happen, leading to a NULL pointer dereference. Fix it by having scdc functions access dw-hdmi's current connector pointer instead, which is assigned during the bridge enablement stage. [narmstrong: moved Fixes tag before first S-o-b and added Reported-by tag]
CVE-2023-53807 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: clk: clocking-wizard: Fix Oops in clk_wzrd_register_divider() Smatch detected this potential error pointer dereference clk_wzrd_register_divider(). If devm_clk_hw_register() fails then it sets "hw" to an error pointer and then dereferences it on the next line. Return the error directly instead.
CVE-2023-53799 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: crypto: api - Use work queue in crypto_destroy_instance The function crypto_drop_spawn expects to be called in process context. However, when an instance is unregistered while it still has active users, the last user may cause the instance to be freed in atomic context. Fix this by delaying the freeing to a work queue.