| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
perf/core: Fix system hang caused by cpu-clock usage
cpu-clock usage by the async-profiler tool can trigger a system hang,
which got bisected back to the following commit by Octavia Togami:
18dbcbfabfff ("perf: Fix the POLL_HUP delivery breakage") causes this issue
The root cause of the hang is that cpu-clock is a special type of SW
event which relies on hrtimers. The __perf_event_overflow() callback
is invoked from the hrtimer handler for cpu-clock events, and
__perf_event_overflow() tries to call cpu_clock_event_stop()
to stop the event, which calls htimer_cancel() to cancel the hrtimer.
But that's a recursion into the hrtimer code from a hrtimer handler,
which (unsurprisingly) deadlocks.
To fix this bug, use hrtimer_try_to_cancel() instead, and set
the PERF_HES_STOPPED flag, which causes perf_swevent_hrtimer()
to stop the event once it sees the PERF_HES_STOPPED flag.
[ mingo: Fixed the comments and improved the changelog. ] |
| In the Linux kernel, the following vulnerability has been resolved:
netlink: annotate lockless accesses to nlk->max_recvmsg_len
syzbot reported a data-race in data-race in netlink_recvmsg() [1]
Indeed, netlink_recvmsg() can be run concurrently,
and netlink_dump() also needs protection.
[1]
BUG: KCSAN: data-race in netlink_recvmsg / netlink_recvmsg
read to 0xffff888141840b38 of 8 bytes by task 23057 on cpu 0:
netlink_recvmsg+0xea/0x730 net/netlink/af_netlink.c:1988
sock_recvmsg_nosec net/socket.c:1017 [inline]
sock_recvmsg net/socket.c:1038 [inline]
__sys_recvfrom+0x1ee/0x2e0 net/socket.c:2194
__do_sys_recvfrom net/socket.c:2212 [inline]
__se_sys_recvfrom net/socket.c:2208 [inline]
__x64_sys_recvfrom+0x78/0x90 net/socket.c:2208
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
write to 0xffff888141840b38 of 8 bytes by task 23037 on cpu 1:
netlink_recvmsg+0x114/0x730 net/netlink/af_netlink.c:1989
sock_recvmsg_nosec net/socket.c:1017 [inline]
sock_recvmsg net/socket.c:1038 [inline]
____sys_recvmsg+0x156/0x310 net/socket.c:2720
___sys_recvmsg net/socket.c:2762 [inline]
do_recvmmsg+0x2e5/0x710 net/socket.c:2856
__sys_recvmmsg net/socket.c:2935 [inline]
__do_sys_recvmmsg net/socket.c:2958 [inline]
__se_sys_recvmmsg net/socket.c:2951 [inline]
__x64_sys_recvmmsg+0xe2/0x160 net/socket.c:2951
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
value changed: 0x0000000000000000 -> 0x0000000000001000
Reported by Kernel Concurrency Sanitizer on:
CPU: 1 PID: 23037 Comm: syz-executor.2 Not tainted 6.3.0-rc4-syzkaller-00195-g5a57b48fdfcb #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/02/2023 |
| In the Linux kernel, the following vulnerability has been resolved:
ubi: Fix UAF wear-leveling entry in eraseblk_count_seq_show()
Wear-leveling entry could be freed in error path, which may be accessed
again in eraseblk_count_seq_show(), for example:
__erase_worker eraseblk_count_seq_show
wl = ubi->lookuptbl[*block_number]
if (wl)
wl_entry_destroy
ubi->lookuptbl[e->pnum] = NULL
kmem_cache_free(ubi_wl_entry_slab, e)
erase_count = wl->ec // UAF!
Wear-leveling entry updating/accessing in ubi->lookuptbl should be
protected by ubi->wl_lock, fix it by adding ubi->wl_lock to serialize
wl entry accessing between wl_entry_destroy() and
eraseblk_count_seq_show().
Fetch a reproducer in [Link]. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme-core: fix memory leak in dhchap_secret_store
Free dhchap_secret in nvme_ctrl_dhchap_secret_store() before we return
fix following kmemleack:-
unreferenced object 0xffff8886376ea800 (size 64):
comm "check", pid 22048, jiffies 4344316705 (age 92.199s)
hex dump (first 32 bytes):
44 48 48 43 2d 31 3a 30 30 3a 6e 78 72 35 4b 67 DHHC-1:00:nxr5Kg
75 58 34 75 6f 41 78 73 4a 61 34 63 2f 68 75 4c uX4uoAxsJa4c/huL
backtrace:
[<0000000030ce5d4b>] __kmalloc+0x4b/0x130
[<000000009be1cdc1>] nvme_ctrl_dhchap_secret_store+0x8f/0x160 [nvme_core]
[<00000000ac06c96a>] kernfs_fop_write_iter+0x12b/0x1c0
[<00000000437e7ced>] vfs_write+0x2ba/0x3c0
[<00000000f9491baf>] ksys_write+0x5f/0xe0
[<000000001c46513d>] do_syscall_64+0x3b/0x90
[<00000000ecf348fe>] entry_SYSCALL_64_after_hwframe+0x72/0xdc
unreferenced object 0xffff8886376eaf00 (size 64):
comm "check", pid 22048, jiffies 4344316736 (age 92.168s)
hex dump (first 32 bytes):
44 48 48 43 2d 31 3a 30 30 3a 6e 78 72 35 4b 67 DHHC-1:00:nxr5Kg
75 58 34 75 6f 41 78 73 4a 61 34 63 2f 68 75 4c uX4uoAxsJa4c/huL
backtrace:
[<0000000030ce5d4b>] __kmalloc+0x4b/0x130
[<000000009be1cdc1>] nvme_ctrl_dhchap_secret_store+0x8f/0x160 [nvme_core]
[<00000000ac06c96a>] kernfs_fop_write_iter+0x12b/0x1c0
[<00000000437e7ced>] vfs_write+0x2ba/0x3c0
[<00000000f9491baf>] ksys_write+0x5f/0xe0
[<000000001c46513d>] do_syscall_64+0x3b/0x90
[<00000000ecf348fe>] entry_SYSCALL_64_after_hwframe+0x72/0xdc |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: mediatek: mt8186: Fix use-after-free in driver remove path
When devm runs function in the "remove" path for a device it runs them
in the reverse order. That means that if you have parts of your driver
that aren't using devm or are using "roll your own" devm w/
devm_add_action_or_reset() you need to keep that in mind.
The mt8186 audio driver didn't quite get this right. Specifically, in
mt8186_init_clock() it called mt8186_audsys_clk_register() and then
went on to call a bunch of other devm function. The caller of
mt8186_init_clock() used devm_add_action_or_reset() to call
mt8186_deinit_clock() but, because of the intervening devm functions,
the order was wrong.
Specifically at probe time, the order was:
1. mt8186_audsys_clk_register()
2. afe_priv->clk = devm_kcalloc(...)
3. afe_priv->clk[i] = devm_clk_get(...)
At remove time, the order (which should have been 3, 2, 1) was:
1. mt8186_audsys_clk_unregister()
3. Free all of afe_priv->clk[i]
2. Free afe_priv->clk
The above seemed to be causing a use-after-free. Luckily, it's easy to
fix this by simply using devm more correctly. Let's move the
devm_add_action_or_reset() to the right place. In addition to fixing
the use-after-free, code inspection shows that this fixes a leak
(missing call to mt8186_audsys_clk_unregister()) that would have
happened if any of the syscon_regmap_lookup_by_phandle() calls in
mt8186_init_clock() had failed. |
| In the Linux kernel, the following vulnerability has been resolved:
of: overlay: Call of_changeset_init() early
When of_overlay_fdt_apply() fails, the changeset may be partially
applied, and the caller is still expected to call of_overlay_remove() to
clean up this partial state.
However, of_overlay_apply() calls of_resolve_phandles() before
init_overlay_changeset(). Hence if the overlay fails to apply due to an
unresolved symbol, the overlay_changeset.cset.entries list is still
uninitialized, and cleanup will crash with a NULL-pointer dereference in
overlay_removal_is_ok().
Fix this by moving the call to of_changeset_init() from
init_overlay_changeset() to of_overlay_fdt_apply(), where all other
early initialization is done. |
| In the Linux kernel, the following vulnerability has been resolved:
tty: serial: samsung_tty: Fix a memory leak in s3c24xx_serial_getclk() in case of error
If clk_get_rate() fails, the clk that has just been allocated needs to be
freed. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: bpf_sk_storage: Fix invalid wait context lockdep report
'./test_progs -t test_local_storage' reported a splat:
[ 27.137569] =============================
[ 27.138122] [ BUG: Invalid wait context ]
[ 27.138650] 6.5.0-03980-gd11ae1b16b0a #247 Tainted: G O
[ 27.139542] -----------------------------
[ 27.140106] test_progs/1729 is trying to lock:
[ 27.140713] ffff8883ef047b88 (stock_lock){-.-.}-{3:3}, at: local_lock_acquire+0x9/0x130
[ 27.141834] other info that might help us debug this:
[ 27.142437] context-{5:5}
[ 27.142856] 2 locks held by test_progs/1729:
[ 27.143352] #0: ffffffff84bcd9c0 (rcu_read_lock){....}-{1:3}, at: rcu_lock_acquire+0x4/0x40
[ 27.144492] #1: ffff888107deb2c0 (&storage->lock){..-.}-{2:2}, at: bpf_local_storage_update+0x39e/0x8e0
[ 27.145855] stack backtrace:
[ 27.146274] CPU: 0 PID: 1729 Comm: test_progs Tainted: G O 6.5.0-03980-gd11ae1b16b0a #247
[ 27.147550] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[ 27.149127] Call Trace:
[ 27.149490] <TASK>
[ 27.149867] dump_stack_lvl+0x130/0x1d0
[ 27.152609] dump_stack+0x14/0x20
[ 27.153131] __lock_acquire+0x1657/0x2220
[ 27.153677] lock_acquire+0x1b8/0x510
[ 27.157908] local_lock_acquire+0x29/0x130
[ 27.159048] obj_cgroup_charge+0xf4/0x3c0
[ 27.160794] slab_pre_alloc_hook+0x28e/0x2b0
[ 27.161931] __kmem_cache_alloc_node+0x51/0x210
[ 27.163557] __kmalloc+0xaa/0x210
[ 27.164593] bpf_map_kzalloc+0xbc/0x170
[ 27.165147] bpf_selem_alloc+0x130/0x510
[ 27.166295] bpf_local_storage_update+0x5aa/0x8e0
[ 27.167042] bpf_fd_sk_storage_update_elem+0xdb/0x1a0
[ 27.169199] bpf_map_update_value+0x415/0x4f0
[ 27.169871] map_update_elem+0x413/0x550
[ 27.170330] __sys_bpf+0x5e9/0x640
[ 27.174065] __x64_sys_bpf+0x80/0x90
[ 27.174568] do_syscall_64+0x48/0xa0
[ 27.175201] entry_SYSCALL_64_after_hwframe+0x6e/0xd8
[ 27.175932] RIP: 0033:0x7effb40e41ad
[ 27.176357] Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d8
[ 27.179028] RSP: 002b:00007ffe64c21fc8 EFLAGS: 00000202 ORIG_RAX: 0000000000000141
[ 27.180088] RAX: ffffffffffffffda RBX: 00007ffe64c22768 RCX: 00007effb40e41ad
[ 27.181082] RDX: 0000000000000020 RSI: 00007ffe64c22008 RDI: 0000000000000002
[ 27.182030] RBP: 00007ffe64c21ff0 R08: 0000000000000000 R09: 00007ffe64c22788
[ 27.183038] R10: 0000000000000064 R11: 0000000000000202 R12: 0000000000000000
[ 27.184006] R13: 00007ffe64c22788 R14: 00007effb42a1000 R15: 0000000000000000
[ 27.184958] </TASK>
It complains about acquiring a local_lock while holding a raw_spin_lock.
It means it should not allocate memory while holding a raw_spin_lock
since it is not safe for RT.
raw_spin_lock is needed because bpf_local_storage supports tracing
context. In particular for task local storage, it is easy to
get a "current" task PTR_TO_BTF_ID in tracing bpf prog.
However, task (and cgroup) local storage has already been moved to
bpf mem allocator which can be used after raw_spin_lock.
The splat is for the sk storage. For sk (and inode) storage,
it has not been moved to bpf mem allocator. Using raw_spin_lock or not,
kzalloc(GFP_ATOMIC) could theoretically be unsafe in tracing context.
However, the local storage helper requires a verifier accepted
sk pointer (PTR_TO_BTF_ID), it is hypothetical if that (mean running
a bpf prog in a kzalloc unsafe context and also able to hold a verifier
accepted sk pointer) could happen.
This patch avoids kzalloc after raw_spin_lock to silent the splat.
There is an existing kzalloc before the raw_spin_lock. At that point,
a kzalloc is very likely required because a lookup has just been done
before. Thus, this patch always does the kzalloc before acq
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
iommufd: IOMMUFD_DESTROY should not increase the refcount
syzkaller found a race where IOMMUFD_DESTROY increments the refcount:
obj = iommufd_get_object(ucmd->ictx, cmd->id, IOMMUFD_OBJ_ANY);
if (IS_ERR(obj))
return PTR_ERR(obj);
iommufd_ref_to_users(obj);
/* See iommufd_ref_to_users() */
if (!iommufd_object_destroy_user(ucmd->ictx, obj))
As part of the sequence to join the two existing primitives together.
Allowing the refcount the be elevated without holding the destroy_rwsem
violates the assumption that all temporary refcount elevations are
protected by destroy_rwsem. Racing IOMMUFD_DESTROY with
iommufd_object_destroy_user() will cause spurious failures:
WARNING: CPU: 0 PID: 3076 at drivers/iommu/iommufd/device.c:477 iommufd_access_destroy+0x18/0x20 drivers/iommu/iommufd/device.c:478
Modules linked in:
CPU: 0 PID: 3076 Comm: syz-executor.0 Not tainted 6.3.0-rc1-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/03/2023
RIP: 0010:iommufd_access_destroy+0x18/0x20 drivers/iommu/iommufd/device.c:477
Code: e8 3d 4e 00 00 84 c0 74 01 c3 0f 0b c3 0f 1f 44 00 00 f3 0f 1e fa 48 89 fe 48 8b bf a8 00 00 00 e8 1d 4e 00 00 84 c0 74 01 c3 <0f> 0b c3 0f 1f 44 00 00 41 57 41 56 41 55 4c 8d ae d0 00 00 00 41
RSP: 0018:ffffc90003067e08 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff888109ea0300 RCX: 0000000000000000
RDX: 0000000000000001 RSI: 0000000000000000 RDI: 00000000ffffffff
RBP: 0000000000000004 R08: 0000000000000000 R09: ffff88810bbb3500
R10: ffff88810bbb3e48 R11: 0000000000000000 R12: ffffc90003067e88
R13: ffffc90003067ea8 R14: ffff888101249800 R15: 00000000fffffffe
FS: 00007ff7254fe6c0(0000) GS:ffff888237c00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000555557262da8 CR3: 000000010a6fd000 CR4: 0000000000350ef0
Call Trace:
<TASK>
iommufd_test_create_access drivers/iommu/iommufd/selftest.c:596 [inline]
iommufd_test+0x71c/0xcf0 drivers/iommu/iommufd/selftest.c:813
iommufd_fops_ioctl+0x10f/0x1b0 drivers/iommu/iommufd/main.c:337
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:870 [inline]
__se_sys_ioctl fs/ioctl.c:856 [inline]
__x64_sys_ioctl+0x84/0xc0 fs/ioctl.c:856
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x38/0x80 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
The solution is to not increment the refcount on the IOMMUFD_DESTROY path
at all. Instead use the xa_lock to serialize everything. The refcount
check == 1 and xa_erase can be done under a single critical region. This
avoids the need for any refcount incrementing.
It has the downside that if userspace races destroy with other operations
it will get an EBUSY instead of waiting, but this is kind of racing is
already dangerous. |
| In the Linux kernel, the following vulnerability has been resolved:
netlink: do not hard code device address lenth in fdb dumps
syzbot reports that some netdev devices do not have a six bytes
address [1]
Replace ETH_ALEN by dev->addr_len.
[1] (Case of a device where dev->addr_len = 4)
BUG: KMSAN: kernel-infoleak in instrument_copy_to_user include/linux/instrumented.h:114 [inline]
BUG: KMSAN: kernel-infoleak in copyout+0xb8/0x100 lib/iov_iter.c:169
instrument_copy_to_user include/linux/instrumented.h:114 [inline]
copyout+0xb8/0x100 lib/iov_iter.c:169
_copy_to_iter+0x6d8/0x1d00 lib/iov_iter.c:536
copy_to_iter include/linux/uio.h:206 [inline]
simple_copy_to_iter+0x68/0xa0 net/core/datagram.c:513
__skb_datagram_iter+0x123/0xdc0 net/core/datagram.c:419
skb_copy_datagram_iter+0x5c/0x200 net/core/datagram.c:527
skb_copy_datagram_msg include/linux/skbuff.h:3960 [inline]
netlink_recvmsg+0x4ae/0x15a0 net/netlink/af_netlink.c:1970
sock_recvmsg_nosec net/socket.c:1019 [inline]
sock_recvmsg net/socket.c:1040 [inline]
____sys_recvmsg+0x283/0x7f0 net/socket.c:2722
___sys_recvmsg+0x223/0x840 net/socket.c:2764
do_recvmmsg+0x4f9/0xfd0 net/socket.c:2858
__sys_recvmmsg net/socket.c:2937 [inline]
__do_sys_recvmmsg net/socket.c:2960 [inline]
__se_sys_recvmmsg net/socket.c:2953 [inline]
__x64_sys_recvmmsg+0x397/0x490 net/socket.c:2953
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Uninit was stored to memory at:
__nla_put lib/nlattr.c:1009 [inline]
nla_put+0x1c6/0x230 lib/nlattr.c:1067
nlmsg_populate_fdb_fill+0x2b8/0x600 net/core/rtnetlink.c:4071
nlmsg_populate_fdb net/core/rtnetlink.c:4418 [inline]
ndo_dflt_fdb_dump+0x616/0x840 net/core/rtnetlink.c:4456
rtnl_fdb_dump+0x14ff/0x1fc0 net/core/rtnetlink.c:4629
netlink_dump+0x9d1/0x1310 net/netlink/af_netlink.c:2268
netlink_recvmsg+0xc5c/0x15a0 net/netlink/af_netlink.c:1995
sock_recvmsg_nosec+0x7a/0x120 net/socket.c:1019
____sys_recvmsg+0x664/0x7f0 net/socket.c:2720
___sys_recvmsg+0x223/0x840 net/socket.c:2764
do_recvmmsg+0x4f9/0xfd0 net/socket.c:2858
__sys_recvmmsg net/socket.c:2937 [inline]
__do_sys_recvmmsg net/socket.c:2960 [inline]
__se_sys_recvmmsg net/socket.c:2953 [inline]
__x64_sys_recvmmsg+0x397/0x490 net/socket.c:2953
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Uninit was created at:
slab_post_alloc_hook+0x12d/0xb60 mm/slab.h:716
slab_alloc_node mm/slub.c:3451 [inline]
__kmem_cache_alloc_node+0x4ff/0x8b0 mm/slub.c:3490
kmalloc_trace+0x51/0x200 mm/slab_common.c:1057
kmalloc include/linux/slab.h:559 [inline]
__hw_addr_create net/core/dev_addr_lists.c:60 [inline]
__hw_addr_add_ex+0x2e5/0x9e0 net/core/dev_addr_lists.c:118
__dev_mc_add net/core/dev_addr_lists.c:867 [inline]
dev_mc_add+0x9a/0x130 net/core/dev_addr_lists.c:885
igmp6_group_added+0x267/0xbc0 net/ipv6/mcast.c:680
ipv6_mc_up+0x296/0x3b0 net/ipv6/mcast.c:2754
ipv6_mc_remap+0x1e/0x30 net/ipv6/mcast.c:2708
addrconf_type_change net/ipv6/addrconf.c:3731 [inline]
addrconf_notify+0x4d3/0x1d90 net/ipv6/addrconf.c:3699
notifier_call_chain kernel/notifier.c:93 [inline]
raw_notifier_call_chain+0xe4/0x430 kernel/notifier.c:461
call_netdevice_notifiers_info net/core/dev.c:1935 [inline]
call_netdevice_notifiers_extack net/core/dev.c:1973 [inline]
call_netdevice_notifiers+0x1ee/0x2d0 net/core/dev.c:1987
bond_enslave+0xccd/0x53f0 drivers/net/bonding/bond_main.c:1906
do_set_master net/core/rtnetlink.c:2626 [inline]
rtnl_newlink_create net/core/rtnetlink.c:3460 [inline]
__rtnl_newlink net/core/rtnetlink.c:3660 [inline]
rtnl_newlink+0x378c/0x40e0 net/core/rtnetlink.c:3673
rtnetlink_rcv_msg+0x16a6/0x1840 net/core/rtnetlink.c:6395
netlink_rcv_skb+0x371/0x650 net/netlink/af_netlink.c:2546
rtnetlink_rcv+0x34/0x40 net/core/rtnetlink.c:6413
netlink_unicast_kernel net/netlink/af_netlink.c:1339 [inline]
netlink_unicast+0xf28/0x1230 net/netlink/af_
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
i40e: Fix DMA mappings leak
During reallocation of RX buffers, new DMA mappings are created for
those buffers.
steps for reproduction:
while :
do
for ((i=0; i<=8160; i=i+32))
do
ethtool -G enp130s0f0 rx $i tx $i
sleep 0.5
ethtool -g enp130s0f0
done
done
This resulted in crash:
i40e 0000:01:00.1: Unable to allocate memory for the Rx descriptor ring, size=65536
Driver BUG
WARNING: CPU: 0 PID: 4300 at net/core/xdp.c:141 xdp_rxq_info_unreg+0x43/0x50
Call Trace:
i40e_free_rx_resources+0x70/0x80 [i40e]
i40e_set_ringparam+0x27c/0x800 [i40e]
ethnl_set_rings+0x1b2/0x290
genl_family_rcv_msg_doit.isra.15+0x10f/0x150
genl_family_rcv_msg+0xb3/0x160
? rings_fill_reply+0x1a0/0x1a0
genl_rcv_msg+0x47/0x90
? genl_family_rcv_msg+0x160/0x160
netlink_rcv_skb+0x4c/0x120
genl_rcv+0x24/0x40
netlink_unicast+0x196/0x230
netlink_sendmsg+0x204/0x3d0
sock_sendmsg+0x4c/0x50
__sys_sendto+0xee/0x160
? handle_mm_fault+0xbe/0x1e0
? syscall_trace_enter+0x1d3/0x2c0
__x64_sys_sendto+0x24/0x30
do_syscall_64+0x5b/0x1a0
entry_SYSCALL_64_after_hwframe+0x65/0xca
RIP: 0033:0x7f5eac8b035b
Missing register, driver bug
WARNING: CPU: 0 PID: 4300 at net/core/xdp.c:119 xdp_rxq_info_unreg_mem_model+0x69/0x140
Call Trace:
xdp_rxq_info_unreg+0x1e/0x50
i40e_free_rx_resources+0x70/0x80 [i40e]
i40e_set_ringparam+0x27c/0x800 [i40e]
ethnl_set_rings+0x1b2/0x290
genl_family_rcv_msg_doit.isra.15+0x10f/0x150
genl_family_rcv_msg+0xb3/0x160
? rings_fill_reply+0x1a0/0x1a0
genl_rcv_msg+0x47/0x90
? genl_family_rcv_msg+0x160/0x160
netlink_rcv_skb+0x4c/0x120
genl_rcv+0x24/0x40
netlink_unicast+0x196/0x230
netlink_sendmsg+0x204/0x3d0
sock_sendmsg+0x4c/0x50
__sys_sendto+0xee/0x160
? handle_mm_fault+0xbe/0x1e0
? syscall_trace_enter+0x1d3/0x2c0
__x64_sys_sendto+0x24/0x30
do_syscall_64+0x5b/0x1a0
entry_SYSCALL_64_after_hwframe+0x65/0xca
RIP: 0033:0x7f5eac8b035b
This was caused because of new buffers with different RX ring count should
substitute older ones, but those buffers were freed in
i40e_configure_rx_ring and reallocated again with i40e_alloc_rx_bi,
thus kfree on rx_bi caused leak of already mapped DMA.
Fix this by reallocating ZC with rx_bi_zc struct when BPF program loads. Additionally
reallocate back to rx_bi when BPF program unloads.
If BPF program is loaded/unloaded and XSK pools are created, reallocate
RX queues accordingly in XSP_SETUP_XSK_POOL handler. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix panic due to wrong pageattr of im->image
In the scenario where livepatch and kretfunc coexist, the pageattr of
im->image is rox after arch_prepare_bpf_trampoline in
bpf_trampoline_update, and then modify_fentry or register_fentry returns
-EAGAIN from bpf_tramp_ftrace_ops_func, the BPF_TRAMP_F_ORIG_STACK flag
will be configured, and arch_prepare_bpf_trampoline will be re-executed.
At this time, because the pageattr of im->image is rox,
arch_prepare_bpf_trampoline will read and write im->image, which causes
a fault. as follows:
insmod livepatch-sample.ko # samples/livepatch/livepatch-sample.c
bpftrace -e 'kretfunc:cmdline_proc_show {}'
BUG: unable to handle page fault for address: ffffffffa0206000
PGD 322d067 P4D 322d067 PUD 322e063 PMD 1297e067 PTE d428061
Oops: 0003 [#1] PREEMPT SMP PTI
CPU: 2 PID: 270 Comm: bpftrace Tainted: G E K 6.1.0 #5
RIP: 0010:arch_prepare_bpf_trampoline+0xed/0x8c0
RSP: 0018:ffffc90001083ad8 EFLAGS: 00010202
RAX: ffffffffa0206000 RBX: 0000000000000020 RCX: 0000000000000000
RDX: ffffffffa0206001 RSI: ffffffffa0206000 RDI: 0000000000000030
RBP: ffffc90001083b70 R08: 0000000000000066 R09: ffff88800f51b400
R10: 000000002e72c6e5 R11: 00000000d0a15080 R12: ffff8880110a68c8
R13: 0000000000000000 R14: ffff88800f51b400 R15: ffffffff814fec10
FS: 00007f87bc0dc780(0000) GS:ffff88803e600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffffffa0206000 CR3: 0000000010b70000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
bpf_trampoline_update+0x25a/0x6b0
__bpf_trampoline_link_prog+0x101/0x240
bpf_trampoline_link_prog+0x2d/0x50
bpf_tracing_prog_attach+0x24c/0x530
bpf_raw_tp_link_attach+0x73/0x1d0
__sys_bpf+0x100e/0x2570
__x64_sys_bpf+0x1c/0x30
do_syscall_64+0x5b/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
With this patch, when modify_fentry or register_fentry returns -EAGAIN
from bpf_tramp_ftrace_ops_func, the pageattr of im->image will be reset
to nx+rw. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf, sockmap: Fix skb refcnt race after locking changes
There is a race where skb's from the sk_psock_backlog can be referenced
after userspace side has already skb_consumed() the sk_buff and its refcnt
dropped to zer0 causing use after free.
The flow is the following:
while ((skb = skb_peek(&psock->ingress_skb))
sk_psock_handle_Skb(psock, skb, ..., ingress)
if (!ingress) ...
sk_psock_skb_ingress
sk_psock_skb_ingress_enqueue(skb)
msg->skb = skb
sk_psock_queue_msg(psock, msg)
skb_dequeue(&psock->ingress_skb)
The sk_psock_queue_msg() puts the msg on the ingress_msg queue. This is
what the application reads when recvmsg() is called. An application can
read this anytime after the msg is placed on the queue. The recvmsg hook
will also read msg->skb and then after user space reads the msg will call
consume_skb(skb) on it effectively free'ing it.
But, the race is in above where backlog queue still has a reference to
the skb and calls skb_dequeue(). If the skb_dequeue happens after the
user reads and free's the skb we have a use after free.
The !ingress case does not suffer from this problem because it uses
sendmsg_*(sk, msg) which does not pass the sk_buff further down the
stack.
The following splat was observed with 'test_progs -t sockmap_listen':
[ 1022.710250][ T2556] general protection fault, ...
[...]
[ 1022.712830][ T2556] Workqueue: events sk_psock_backlog
[ 1022.713262][ T2556] RIP: 0010:skb_dequeue+0x4c/0x80
[ 1022.713653][ T2556] Code: ...
[...]
[ 1022.720699][ T2556] Call Trace:
[ 1022.720984][ T2556] <TASK>
[ 1022.721254][ T2556] ? die_addr+0x32/0x80^M
[ 1022.721589][ T2556] ? exc_general_protection+0x25a/0x4b0
[ 1022.722026][ T2556] ? asm_exc_general_protection+0x22/0x30
[ 1022.722489][ T2556] ? skb_dequeue+0x4c/0x80
[ 1022.722854][ T2556] sk_psock_backlog+0x27a/0x300
[ 1022.723243][ T2556] process_one_work+0x2a7/0x5b0
[ 1022.723633][ T2556] worker_thread+0x4f/0x3a0
[ 1022.723998][ T2556] ? __pfx_worker_thread+0x10/0x10
[ 1022.724386][ T2556] kthread+0xfd/0x130
[ 1022.724709][ T2556] ? __pfx_kthread+0x10/0x10
[ 1022.725066][ T2556] ret_from_fork+0x2d/0x50
[ 1022.725409][ T2556] ? __pfx_kthread+0x10/0x10
[ 1022.725799][ T2556] ret_from_fork_asm+0x1b/0x30
[ 1022.726201][ T2556] </TASK>
To fix we add an skb_get() before passing the skb to be enqueued in the
engress queue. This bumps the skb->users refcnt so that consume_skb()
and kfree_skb will not immediately free the sk_buff. With this we can
be sure the skb is still around when we do the dequeue. Then we just
need to decrement the refcnt or free the skb in the backlog case which
we do by calling kfree_skb() on the ingress case as well as the sendmsg
case.
Before locking change from fixes tag we had the sock locked so we
couldn't race with user and there was no issue here. |
| In the Linux kernel, the following vulnerability has been resolved:
ubi: Fix use-after-free when volume resizing failed
There is an use-after-free problem reported by KASAN:
==================================================================
BUG: KASAN: use-after-free in ubi_eba_copy_table+0x11f/0x1c0 [ubi]
Read of size 8 at addr ffff888101eec008 by task ubirsvol/4735
CPU: 2 PID: 4735 Comm: ubirsvol
Not tainted 6.1.0-rc1-00003-g84fa3304a7fc-dirty #14
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996),
BIOS 1.14.0-1.fc33 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x34/0x44
print_report+0x171/0x472
kasan_report+0xad/0x130
ubi_eba_copy_table+0x11f/0x1c0 [ubi]
ubi_resize_volume+0x4f9/0xbc0 [ubi]
ubi_cdev_ioctl+0x701/0x1850 [ubi]
__x64_sys_ioctl+0x11d/0x170
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
</TASK>
When ubi_change_vtbl_record() returns an error in ubi_resize_volume(),
"new_eba_tbl" will be freed on error handing path, but it is holded
by "vol->eba_tbl" in ubi_eba_replace_table(). It means that the liftcycle
of "vol->eba_tbl" and "vol" are different, so when resizing volume in
next time, it causing an use-after-free fault.
Fix it by not freeing "new_eba_tbl" after it replaced in
ubi_eba_replace_table(), while will be freed in next volume resizing. |
| In the Linux kernel, the following vulnerability has been resolved:
erofs: kill hooked chains to avoid loops on deduplicated compressed images
After heavily stressing EROFS with several images which include a
hand-crafted image of repeated patterns for more than 46 days, I found
two chains could be linked with each other almost simultaneously and
form a loop so that the entire loop won't be submitted. As a
consequence, the corresponding file pages will remain locked forever.
It can be _only_ observed on data-deduplicated compressed images.
For example, consider two chains with five pclusters in total:
Chain 1: 2->3->4->5 -- The tail pcluster is 5;
Chain 2: 5->1->2 -- The tail pcluster is 2.
Chain 2 could link to Chain 1 with pcluster 5; and Chain 1 could link
to Chain 2 at the same time with pcluster 2.
Since hooked chains are all linked locklessly now, I have no idea how
to simply avoid the race. Instead, let's avoid hooked chains completely
until I could work out a proper way to fix this and end users finally
tell us that it's needed to add it back.
Actually, this optimization can be found with multi-threaded workloads
(especially even more often on deduplicated compressed images), yet I'm
not sure about the overall system impacts of not having this compared
with implementation complexity. |
| In the Linux kernel, the following vulnerability has been resolved:
md: fix warning for holder mismatch from export_rdev()
Commit a1d767191096 ("md: use mddev->external to select holder in
export_rdev()") fix the problem that 'claim_rdev' is used for
blkdev_get_by_dev() while 'rdev' is used for blkdev_put().
However, if mddev->external is changed from 0 to 1, then 'rdev' is used
for blkdev_get_by_dev() while 'claim_rdev' is used for blkdev_put(). And
this problem can be reporduced reliably by following:
New file: mdadm/tests/23rdev-lifetime
devname=${dev0##*/}
devt=`cat /sys/block/$devname/dev`
pid=""
runtime=2
clean_up_test() {
pill -9 $pid
echo clear > /sys/block/md0/md/array_state
}
trap 'clean_up_test' EXIT
add_by_sysfs() {
while true; do
echo $devt > /sys/block/md0/md/new_dev
done
}
remove_by_sysfs(){
while true; do
echo remove > /sys/block/md0/md/dev-${devname}/state
done
}
echo md0 > /sys/module/md_mod/parameters/new_array || die "create md0 failed"
add_by_sysfs &
pid="$pid $!"
remove_by_sysfs &
pid="$pid $!"
sleep $runtime
exit 0
Test cmd:
./test --save-logs --logdir=/tmp/ --keep-going --dev=loop --tests=23rdev-lifetime
Test result:
------------[ cut here ]------------
WARNING: CPU: 0 PID: 960 at block/bdev.c:618 blkdev_put+0x27c/0x330
Modules linked in: multipath md_mod loop
CPU: 0 PID: 960 Comm: test Not tainted 6.5.0-rc2-00121-g01e55c376936-dirty #50
RIP: 0010:blkdev_put+0x27c/0x330
Call Trace:
<TASK>
export_rdev.isra.23+0x50/0xa0 [md_mod]
mddev_unlock+0x19d/0x300 [md_mod]
rdev_attr_store+0xec/0x190 [md_mod]
sysfs_kf_write+0x52/0x70
kernfs_fop_write_iter+0x19a/0x2a0
vfs_write+0x3b5/0x770
ksys_write+0x74/0x150
__x64_sys_write+0x22/0x30
do_syscall_64+0x40/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Fix the problem by recording if 'rdev' is used as holder. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mwifiex: fix memory leak in mwifiex_histogram_read()
Always free the zeroed page on return from 'mwifiex_histogram_read()'. |
| In the Linux kernel, the following vulnerability has been resolved:
drm: bridge: dw_hdmi: fix connector access for scdc
Commit 5d844091f237 ("drm/scdc-helper: Pimp SCDC debugs") changed the scdc
interface to pick up an i2c adapter from a connector instead. However, in
the case of dw-hdmi, the wrong connector was being used to pass i2c adapter
information, since dw-hdmi's embedded connector structure is only populated
when the bridge attachment callback explicitly asks for it.
drm-meson is handling connector creation, so this won't happen, leading to
a NULL pointer dereference.
Fix it by having scdc functions access dw-hdmi's current connector pointer
instead, which is assigned during the bridge enablement stage.
[narmstrong: moved Fixes tag before first S-o-b and added Reported-by tag] |
| In the Linux kernel, the following vulnerability has been resolved:
clk: clocking-wizard: Fix Oops in clk_wzrd_register_divider()
Smatch detected this potential error pointer dereference
clk_wzrd_register_divider(). If devm_clk_hw_register() fails then
it sets "hw" to an error pointer and then dereferences it on the
next line. Return the error directly instead. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: api - Use work queue in crypto_destroy_instance
The function crypto_drop_spawn expects to be called in process
context. However, when an instance is unregistered while it still
has active users, the last user may cause the instance to be freed
in atomic context.
Fix this by delaying the freeing to a work queue. |