| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ubi: Fix use-after-free when volume resizing failed
There is an use-after-free problem reported by KASAN:
==================================================================
BUG: KASAN: use-after-free in ubi_eba_copy_table+0x11f/0x1c0 [ubi]
Read of size 8 at addr ffff888101eec008 by task ubirsvol/4735
CPU: 2 PID: 4735 Comm: ubirsvol
Not tainted 6.1.0-rc1-00003-g84fa3304a7fc-dirty #14
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996),
BIOS 1.14.0-1.fc33 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x34/0x44
print_report+0x171/0x472
kasan_report+0xad/0x130
ubi_eba_copy_table+0x11f/0x1c0 [ubi]
ubi_resize_volume+0x4f9/0xbc0 [ubi]
ubi_cdev_ioctl+0x701/0x1850 [ubi]
__x64_sys_ioctl+0x11d/0x170
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
</TASK>
When ubi_change_vtbl_record() returns an error in ubi_resize_volume(),
"new_eba_tbl" will be freed on error handing path, but it is holded
by "vol->eba_tbl" in ubi_eba_replace_table(). It means that the liftcycle
of "vol->eba_tbl" and "vol" are different, so when resizing volume in
next time, it causing an use-after-free fault.
Fix it by not freeing "new_eba_tbl" after it replaced in
ubi_eba_replace_table(), while will be freed in next volume resizing. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix panic due to wrong pageattr of im->image
In the scenario where livepatch and kretfunc coexist, the pageattr of
im->image is rox after arch_prepare_bpf_trampoline in
bpf_trampoline_update, and then modify_fentry or register_fentry returns
-EAGAIN from bpf_tramp_ftrace_ops_func, the BPF_TRAMP_F_ORIG_STACK flag
will be configured, and arch_prepare_bpf_trampoline will be re-executed.
At this time, because the pageattr of im->image is rox,
arch_prepare_bpf_trampoline will read and write im->image, which causes
a fault. as follows:
insmod livepatch-sample.ko # samples/livepatch/livepatch-sample.c
bpftrace -e 'kretfunc:cmdline_proc_show {}'
BUG: unable to handle page fault for address: ffffffffa0206000
PGD 322d067 P4D 322d067 PUD 322e063 PMD 1297e067 PTE d428061
Oops: 0003 [#1] PREEMPT SMP PTI
CPU: 2 PID: 270 Comm: bpftrace Tainted: G E K 6.1.0 #5
RIP: 0010:arch_prepare_bpf_trampoline+0xed/0x8c0
RSP: 0018:ffffc90001083ad8 EFLAGS: 00010202
RAX: ffffffffa0206000 RBX: 0000000000000020 RCX: 0000000000000000
RDX: ffffffffa0206001 RSI: ffffffffa0206000 RDI: 0000000000000030
RBP: ffffc90001083b70 R08: 0000000000000066 R09: ffff88800f51b400
R10: 000000002e72c6e5 R11: 00000000d0a15080 R12: ffff8880110a68c8
R13: 0000000000000000 R14: ffff88800f51b400 R15: ffffffff814fec10
FS: 00007f87bc0dc780(0000) GS:ffff88803e600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffffffa0206000 CR3: 0000000010b70000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
bpf_trampoline_update+0x25a/0x6b0
__bpf_trampoline_link_prog+0x101/0x240
bpf_trampoline_link_prog+0x2d/0x50
bpf_tracing_prog_attach+0x24c/0x530
bpf_raw_tp_link_attach+0x73/0x1d0
__sys_bpf+0x100e/0x2570
__x64_sys_bpf+0x1c/0x30
do_syscall_64+0x5b/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
With this patch, when modify_fentry or register_fentry returns -EAGAIN
from bpf_tramp_ftrace_ops_func, the pageattr of im->image will be reset
to nx+rw. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf, sockmap: Fix skb refcnt race after locking changes
There is a race where skb's from the sk_psock_backlog can be referenced
after userspace side has already skb_consumed() the sk_buff and its refcnt
dropped to zer0 causing use after free.
The flow is the following:
while ((skb = skb_peek(&psock->ingress_skb))
sk_psock_handle_Skb(psock, skb, ..., ingress)
if (!ingress) ...
sk_psock_skb_ingress
sk_psock_skb_ingress_enqueue(skb)
msg->skb = skb
sk_psock_queue_msg(psock, msg)
skb_dequeue(&psock->ingress_skb)
The sk_psock_queue_msg() puts the msg on the ingress_msg queue. This is
what the application reads when recvmsg() is called. An application can
read this anytime after the msg is placed on the queue. The recvmsg hook
will also read msg->skb and then after user space reads the msg will call
consume_skb(skb) on it effectively free'ing it.
But, the race is in above where backlog queue still has a reference to
the skb and calls skb_dequeue(). If the skb_dequeue happens after the
user reads and free's the skb we have a use after free.
The !ingress case does not suffer from this problem because it uses
sendmsg_*(sk, msg) which does not pass the sk_buff further down the
stack.
The following splat was observed with 'test_progs -t sockmap_listen':
[ 1022.710250][ T2556] general protection fault, ...
[...]
[ 1022.712830][ T2556] Workqueue: events sk_psock_backlog
[ 1022.713262][ T2556] RIP: 0010:skb_dequeue+0x4c/0x80
[ 1022.713653][ T2556] Code: ...
[...]
[ 1022.720699][ T2556] Call Trace:
[ 1022.720984][ T2556] <TASK>
[ 1022.721254][ T2556] ? die_addr+0x32/0x80^M
[ 1022.721589][ T2556] ? exc_general_protection+0x25a/0x4b0
[ 1022.722026][ T2556] ? asm_exc_general_protection+0x22/0x30
[ 1022.722489][ T2556] ? skb_dequeue+0x4c/0x80
[ 1022.722854][ T2556] sk_psock_backlog+0x27a/0x300
[ 1022.723243][ T2556] process_one_work+0x2a7/0x5b0
[ 1022.723633][ T2556] worker_thread+0x4f/0x3a0
[ 1022.723998][ T2556] ? __pfx_worker_thread+0x10/0x10
[ 1022.724386][ T2556] kthread+0xfd/0x130
[ 1022.724709][ T2556] ? __pfx_kthread+0x10/0x10
[ 1022.725066][ T2556] ret_from_fork+0x2d/0x50
[ 1022.725409][ T2556] ? __pfx_kthread+0x10/0x10
[ 1022.725799][ T2556] ret_from_fork_asm+0x1b/0x30
[ 1022.726201][ T2556] </TASK>
To fix we add an skb_get() before passing the skb to be enqueued in the
engress queue. This bumps the skb->users refcnt so that consume_skb()
and kfree_skb will not immediately free the sk_buff. With this we can
be sure the skb is still around when we do the dequeue. Then we just
need to decrement the refcnt or free the skb in the backlog case which
we do by calling kfree_skb() on the ingress case as well as the sendmsg
case.
Before locking change from fixes tag we had the sock locked so we
couldn't race with user and there was no issue here. |
| In the Linux kernel, the following vulnerability has been resolved:
i40e: Fix DMA mappings leak
During reallocation of RX buffers, new DMA mappings are created for
those buffers.
steps for reproduction:
while :
do
for ((i=0; i<=8160; i=i+32))
do
ethtool -G enp130s0f0 rx $i tx $i
sleep 0.5
ethtool -g enp130s0f0
done
done
This resulted in crash:
i40e 0000:01:00.1: Unable to allocate memory for the Rx descriptor ring, size=65536
Driver BUG
WARNING: CPU: 0 PID: 4300 at net/core/xdp.c:141 xdp_rxq_info_unreg+0x43/0x50
Call Trace:
i40e_free_rx_resources+0x70/0x80 [i40e]
i40e_set_ringparam+0x27c/0x800 [i40e]
ethnl_set_rings+0x1b2/0x290
genl_family_rcv_msg_doit.isra.15+0x10f/0x150
genl_family_rcv_msg+0xb3/0x160
? rings_fill_reply+0x1a0/0x1a0
genl_rcv_msg+0x47/0x90
? genl_family_rcv_msg+0x160/0x160
netlink_rcv_skb+0x4c/0x120
genl_rcv+0x24/0x40
netlink_unicast+0x196/0x230
netlink_sendmsg+0x204/0x3d0
sock_sendmsg+0x4c/0x50
__sys_sendto+0xee/0x160
? handle_mm_fault+0xbe/0x1e0
? syscall_trace_enter+0x1d3/0x2c0
__x64_sys_sendto+0x24/0x30
do_syscall_64+0x5b/0x1a0
entry_SYSCALL_64_after_hwframe+0x65/0xca
RIP: 0033:0x7f5eac8b035b
Missing register, driver bug
WARNING: CPU: 0 PID: 4300 at net/core/xdp.c:119 xdp_rxq_info_unreg_mem_model+0x69/0x140
Call Trace:
xdp_rxq_info_unreg+0x1e/0x50
i40e_free_rx_resources+0x70/0x80 [i40e]
i40e_set_ringparam+0x27c/0x800 [i40e]
ethnl_set_rings+0x1b2/0x290
genl_family_rcv_msg_doit.isra.15+0x10f/0x150
genl_family_rcv_msg+0xb3/0x160
? rings_fill_reply+0x1a0/0x1a0
genl_rcv_msg+0x47/0x90
? genl_family_rcv_msg+0x160/0x160
netlink_rcv_skb+0x4c/0x120
genl_rcv+0x24/0x40
netlink_unicast+0x196/0x230
netlink_sendmsg+0x204/0x3d0
sock_sendmsg+0x4c/0x50
__sys_sendto+0xee/0x160
? handle_mm_fault+0xbe/0x1e0
? syscall_trace_enter+0x1d3/0x2c0
__x64_sys_sendto+0x24/0x30
do_syscall_64+0x5b/0x1a0
entry_SYSCALL_64_after_hwframe+0x65/0xca
RIP: 0033:0x7f5eac8b035b
This was caused because of new buffers with different RX ring count should
substitute older ones, but those buffers were freed in
i40e_configure_rx_ring and reallocated again with i40e_alloc_rx_bi,
thus kfree on rx_bi caused leak of already mapped DMA.
Fix this by reallocating ZC with rx_bi_zc struct when BPF program loads. Additionally
reallocate back to rx_bi when BPF program unloads.
If BPF program is loaded/unloaded and XSK pools are created, reallocate
RX queues accordingly in XSP_SETUP_XSK_POOL handler. |
| In the Linux kernel, the following vulnerability has been resolved:
md: fix warning for holder mismatch from export_rdev()
Commit a1d767191096 ("md: use mddev->external to select holder in
export_rdev()") fix the problem that 'claim_rdev' is used for
blkdev_get_by_dev() while 'rdev' is used for blkdev_put().
However, if mddev->external is changed from 0 to 1, then 'rdev' is used
for blkdev_get_by_dev() while 'claim_rdev' is used for blkdev_put(). And
this problem can be reporduced reliably by following:
New file: mdadm/tests/23rdev-lifetime
devname=${dev0##*/}
devt=`cat /sys/block/$devname/dev`
pid=""
runtime=2
clean_up_test() {
pill -9 $pid
echo clear > /sys/block/md0/md/array_state
}
trap 'clean_up_test' EXIT
add_by_sysfs() {
while true; do
echo $devt > /sys/block/md0/md/new_dev
done
}
remove_by_sysfs(){
while true; do
echo remove > /sys/block/md0/md/dev-${devname}/state
done
}
echo md0 > /sys/module/md_mod/parameters/new_array || die "create md0 failed"
add_by_sysfs &
pid="$pid $!"
remove_by_sysfs &
pid="$pid $!"
sleep $runtime
exit 0
Test cmd:
./test --save-logs --logdir=/tmp/ --keep-going --dev=loop --tests=23rdev-lifetime
Test result:
------------[ cut here ]------------
WARNING: CPU: 0 PID: 960 at block/bdev.c:618 blkdev_put+0x27c/0x330
Modules linked in: multipath md_mod loop
CPU: 0 PID: 960 Comm: test Not tainted 6.5.0-rc2-00121-g01e55c376936-dirty #50
RIP: 0010:blkdev_put+0x27c/0x330
Call Trace:
<TASK>
export_rdev.isra.23+0x50/0xa0 [md_mod]
mddev_unlock+0x19d/0x300 [md_mod]
rdev_attr_store+0xec/0x190 [md_mod]
sysfs_kf_write+0x52/0x70
kernfs_fop_write_iter+0x19a/0x2a0
vfs_write+0x3b5/0x770
ksys_write+0x74/0x150
__x64_sys_write+0x22/0x30
do_syscall_64+0x40/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Fix the problem by recording if 'rdev' is used as holder. |
| In the Linux kernel, the following vulnerability has been resolved:
erofs: kill hooked chains to avoid loops on deduplicated compressed images
After heavily stressing EROFS with several images which include a
hand-crafted image of repeated patterns for more than 46 days, I found
two chains could be linked with each other almost simultaneously and
form a loop so that the entire loop won't be submitted. As a
consequence, the corresponding file pages will remain locked forever.
It can be _only_ observed on data-deduplicated compressed images.
For example, consider two chains with five pclusters in total:
Chain 1: 2->3->4->5 -- The tail pcluster is 5;
Chain 2: 5->1->2 -- The tail pcluster is 2.
Chain 2 could link to Chain 1 with pcluster 5; and Chain 1 could link
to Chain 2 at the same time with pcluster 2.
Since hooked chains are all linked locklessly now, I have no idea how
to simply avoid the race. Instead, let's avoid hooked chains completely
until I could work out a proper way to fix this and end users finally
tell us that it's needed to add it back.
Actually, this optimization can be found with multi-threaded workloads
(especially even more often on deduplicated compressed images), yet I'm
not sure about the overall system impacts of not having this compared
with implementation complexity. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/sched: Fix deadlock in drm_sched_entity_kill_jobs_cb
The Mesa issue referenced below pointed out a possible deadlock:
[ 1231.611031] Possible interrupt unsafe locking scenario:
[ 1231.611033] CPU0 CPU1
[ 1231.611034] ---- ----
[ 1231.611035] lock(&xa->xa_lock#17);
[ 1231.611038] local_irq_disable();
[ 1231.611039] lock(&fence->lock);
[ 1231.611041] lock(&xa->xa_lock#17);
[ 1231.611044] <Interrupt>
[ 1231.611045] lock(&fence->lock);
[ 1231.611047]
*** DEADLOCK ***
In this example, CPU0 would be any function accessing job->dependencies
through the xa_* functions that don't disable interrupts (eg:
drm_sched_job_add_dependency(), drm_sched_entity_kill_jobs_cb()).
CPU1 is executing drm_sched_entity_kill_jobs_cb() as a fence signalling
callback so in an interrupt context. It will deadlock when trying to
grab the xa_lock which is already held by CPU0.
Replacing all xa_* usage by their xa_*_irq counterparts would fix
this issue, but Christian pointed out another issue: dma_fence_signal
takes fence.lock and so does dma_fence_add_callback.
dma_fence_signal() // locks f1.lock
-> drm_sched_entity_kill_jobs_cb()
-> foreach dependencies
-> dma_fence_add_callback() // locks f2.lock
This will deadlock if f1 and f2 share the same spinlock.
To fix both issues, the code iterating on dependencies and re-arming them
is moved out to drm_sched_entity_kill_jobs_work().
[phasta: commit message nits] |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: Intel: avs: Disable periods-elapsed work when closing PCM
avs_dai_fe_shutdown() handles the shutdown procedure for HOST HDAudio
stream while period-elapsed work services its IRQs. As the former
frees the DAI's private context, these two operations shall be
synchronized to avoid slab-use-after-free or worse errors. |
| In the Linux kernel, the following vulnerability has been resolved:
bnxt_en: Shutdown FW DMA in bnxt_shutdown()
The netif_close() call in bnxt_shutdown() only stops packet DMA. There
may be FW DMA for trace logging (recently added) that will continue. If
we kexec to a new kernel, the DMA will corrupt memory in the new kernel.
Add bnxt_hwrm_func_drv_unrgtr() to unregister the driver from the FW.
This will stop the FW DMA. In case the call fails, call pcie_flr() to
reset the function and stop the DMA. |
| In the Linux kernel, the following vulnerability has been resolved:
sctp: Prevent TOCTOU out-of-bounds write
For the following path not holding the sock lock,
sctp_diag_dump() -> sctp_for_each_endpoint() -> sctp_ep_dump()
make sure not to exceed bounds in case the address list has grown
between buffer allocation (time-of-check) and write (time-of-use). |
| Inappropriate implementation in WebRTC in Google Chrome prior to 143.0.7499.41 allowed a remote attacker to perform arbitrary read/write via a crafted HTML page. (Chromium security severity: Low) |
| In the Linux kernel, the following vulnerability has been resolved:
mm, swap: fix potential UAF issue for VMA readahead
Since commit 78524b05f1a3 ("mm, swap: avoid redundant swap device
pinning"), the common helper for allocating and preparing a folio in the
swap cache layer no longer tries to get a swap device reference
internally, because all callers of __read_swap_cache_async are already
holding a swap entry reference. The repeated swap device pinning isn't
needed on the same swap device.
Caller of VMA readahead is also holding a reference to the target entry's
swap device, but VMA readahead walks the page table, so it might encounter
swap entries from other devices, and call __read_swap_cache_async on
another device without holding a reference to it.
So it is possible to cause a UAF when swapoff of device A raced with
swapin on device B, and VMA readahead tries to read swap entries from
device A. It's not easy to trigger, but in theory, it could cause real
issues.
Make VMA readahead try to get the device reference first if the swap
device is a different one from the target entry. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: 6lowpan: reset link-local header on ipv6 recv path
Bluetooth 6lowpan.c netdev has header_ops, so it must set link-local
header for RX skb, otherwise things crash, eg. with AF_PACKET SOCK_RAW
Add missing skb_reset_mac_header() for uncompressed ipv6 RX path.
For the compressed one, it is done in lowpan_header_decompress().
Log: (BlueZ 6lowpan-tester Client Recv Raw - Success)
------
kernel BUG at net/core/skbuff.c:212!
Call Trace:
<IRQ>
...
packet_rcv (net/packet/af_packet.c:2152)
...
<TASK>
__local_bh_enable_ip (kernel/softirq.c:407)
netif_rx (net/core/dev.c:5648)
chan_recv_cb (net/bluetooth/6lowpan.c:294 net/bluetooth/6lowpan.c:359)
------ |
| In the Linux kernel, the following vulnerability has been resolved:
sctp: prevent possible shift-out-of-bounds in sctp_transport_update_rto
syzbot reported a possible shift-out-of-bounds [1]
Blamed commit added rto_alpha_max and rto_beta_max set to 1000.
It is unclear if some sctp users are setting very large rto_alpha
and/or rto_beta.
In order to prevent user regression, perform the test at run time.
Also add READ_ONCE() annotations as sysctl values can change under us.
[1]
UBSAN: shift-out-of-bounds in net/sctp/transport.c:509:41
shift exponent 64 is too large for 32-bit type 'unsigned int'
CPU: 0 UID: 0 PID: 16704 Comm: syz.2.2320 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/02/2025
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x16c/0x1f0 lib/dump_stack.c:120
ubsan_epilogue lib/ubsan.c:233 [inline]
__ubsan_handle_shift_out_of_bounds+0x27f/0x420 lib/ubsan.c:494
sctp_transport_update_rto.cold+0x1c/0x34b net/sctp/transport.c:509
sctp_check_transmitted+0x11c4/0x1c30 net/sctp/outqueue.c:1502
sctp_outq_sack+0x4ef/0x1b20 net/sctp/outqueue.c:1338
sctp_cmd_process_sack net/sctp/sm_sideeffect.c:840 [inline]
sctp_cmd_interpreter net/sctp/sm_sideeffect.c:1372 [inline] |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/rw: ensure allocated iovec gets cleared for early failure
A previous commit reused the recyling infrastructure for early cleanup,
but this is not enough for the case where our internal caches have
overflowed. If this happens, then the allocated iovec can get leaked if
the request is also aborted early.
Reinstate the previous forced free of the iovec for that situation. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring: fix regbuf vector size truncation
There is a report of io_estimate_bvec_size() truncating the calculated
number of segments that leads to corruption issues. Check it doesn't
overflow "int"s used later. Rough but simple, can be improved on top. |
| In the Linux kernel, the following vulnerability has been resolved:
NFSD: free copynotify stateid in nfs4_free_ol_stateid()
Typically copynotify stateid is freed either when parent's stateid
is being close/freed or in nfsd4_laundromat if the stateid hasn't
been used in a lease period.
However, in case when the server got an OPEN (which created
a parent stateid), followed by a COPY_NOTIFY using that stateid,
followed by a client reboot. New client instance while doing
CREATE_SESSION would force expire previous state of this client.
It leads to the open state being freed thru release_openowner->
nfs4_free_ol_stateid() and it finds that it still has copynotify
stateid associated with it. We currently print a warning and is
triggerred
WARNING: CPU: 1 PID: 8858 at fs/nfsd/nfs4state.c:1550 nfs4_free_ol_stateid+0xb0/0x100 [nfsd]
This patch, instead, frees the associated copynotify stateid here.
If the parent stateid is freed (without freeing the copynotify
stateids associated with it), it leads to the list corruption
when laundromat ends up freeing the copynotify state later.
[ 1626.839430] Internal error: Oops - BUG: 00000000f2000800 [#1] SMP
[ 1626.842828] Modules linked in: nfnetlink_queue nfnetlink_log bluetooth cfg80211 rpcrdma rdma_cm iw_cm ib_cm ib_core nfsd nfs_acl lockd grace nfs_localio ext4 crc16 mbcache jbd2 overlay uinput snd_seq_dummy snd_hrtimer qrtr rfkill vfat fat uvcvideo snd_hda_codec_generic videobuf2_vmalloc videobuf2_memops snd_hda_intel uvc snd_intel_dspcfg videobuf2_v4l2 videobuf2_common snd_hda_codec snd_hda_core videodev snd_hwdep snd_seq mc snd_seq_device snd_pcm snd_timer snd soundcore sg loop auth_rpcgss vsock_loopback vmw_vsock_virtio_transport_common vmw_vsock_vmci_transport vmw_vmci vsock xfs 8021q garp stp llc mrp nvme ghash_ce e1000e nvme_core sr_mod nvme_keyring nvme_auth cdrom vmwgfx drm_ttm_helper ttm sunrpc dm_mirror dm_region_hash dm_log iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi fuse dm_multipath dm_mod nfnetlink
[ 1626.855594] CPU: 2 UID: 0 PID: 199 Comm: kworker/u24:33 Kdump: loaded Tainted: G B W 6.17.0-rc7+ #22 PREEMPT(voluntary)
[ 1626.857075] Tainted: [B]=BAD_PAGE, [W]=WARN
[ 1626.857573] Hardware name: VMware, Inc. VMware20,1/VBSA, BIOS VMW201.00V.24006586.BA64.2406042154 06/04/2024
[ 1626.858724] Workqueue: nfsd4 laundromat_main [nfsd]
[ 1626.859304] pstate: 61400005 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--)
[ 1626.860010] pc : __list_del_entry_valid_or_report+0x148/0x200
[ 1626.860601] lr : __list_del_entry_valid_or_report+0x148/0x200
[ 1626.861182] sp : ffff8000881d7a40
[ 1626.861521] x29: ffff8000881d7a40 x28: 0000000000000018 x27: ffff0000c2a98200
[ 1626.862260] x26: 0000000000000600 x25: 0000000000000000 x24: ffff8000881d7b20
[ 1626.862986] x23: ffff0000c2a981e8 x22: 1fffe00012410e7d x21: ffff0000920873e8
[ 1626.863701] x20: ffff0000920873e8 x19: ffff000086f22998 x18: 0000000000000000
[ 1626.864421] x17: 20747562202c3839 x16: 3932326636383030 x15: 3030666666662065
[ 1626.865092] x14: 6220646c756f6873 x13: 0000000000000001 x12: ffff60004fd9e4a3
[ 1626.865713] x11: 1fffe0004fd9e4a2 x10: ffff60004fd9e4a2 x9 : dfff800000000000
[ 1626.866320] x8 : 00009fffb0261b5e x7 : ffff00027ecf2513 x6 : 0000000000000001
[ 1626.866938] x5 : ffff00027ecf2510 x4 : ffff60004fd9e4a3 x3 : 0000000000000000
[ 1626.867553] x2 : 0000000000000000 x1 : ffff000096069640 x0 : 000000000000006d
[ 1626.868167] Call trace:
[ 1626.868382] __list_del_entry_valid_or_report+0x148/0x200 (P)
[ 1626.868876] _free_cpntf_state_locked+0xd0/0x268 [nfsd]
[ 1626.869368] nfs4_laundromat+0x6f8/0x1058 [nfsd]
[ 1626.869813] laundromat_main+0x24/0x60 [nfsd]
[ 1626.870231] process_one_work+0x584/0x1050
[ 1626.870595] worker_thread+0x4c4/0xc60
[ 1626.870893] kthread+0x2f8/0x398
[ 1626.871146] ret_from_fork+0x10/0x20
[ 1626.871422] Code: aa1303e1 aa1403e3 910e8000 97bc55d7 (d4210000)
[ 1626.871892] SMP: stopping secondary CPUs |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: MGMT: Fix OOB access in parse_adv_monitor_pattern()
In the parse_adv_monitor_pattern() function, the value of
the 'length' variable is currently limited to HCI_MAX_EXT_AD_LENGTH(251).
The size of the 'value' array in the mgmt_adv_pattern structure is 31.
If the value of 'pattern[i].length' is set in the user space
and exceeds 31, the 'patterns[i].value' array can be accessed
out of bound when copied.
Increasing the size of the 'value' array in
the 'mgmt_adv_pattern' structure will break the userspace.
Considering this, and to avoid OOB access revert the limits for 'offset'
and 'length' back to the value of HCI_MAX_AD_LENGTH.
Found by InfoTeCS on behalf of Linux Verification Center
(linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86: int3472: Fix double free of GPIO device during unregister
regulator_unregister() already frees the associated GPIO device. On
ThinkPad X9 (Lunar Lake), this causes a double free issue that leads to
random failures when other drivers (typically Intel THC) attempt to
allocate interrupts. The root cause is that the reference count of the
pinctrl_intel_platform module unexpectedly drops to zero when this
driver defers its probe.
This behavior can also be reproduced by unloading the module directly.
Fix the issue by removing the redundant release of the GPIO device
during regulator unregistration. |
| In the Linux kernel, the following vulnerability has been resolved:
media: videobuf2: forbid remove_bufs when legacy fileio is active
vb2_ioctl_remove_bufs() call manipulates queue internal buffer list,
potentially overwriting some pointers used by the legacy fileio access
mode. Forbid that ioctl when fileio is active to protect internal queue
state between subsequent read/write calls. |