| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: zoned: fix lock ordering in btrfs_zone_activate()
The btrfs CI reported a lockdep warning as follows by running generic
generic/129.
WARNING: possible circular locking dependency detected
6.7.0-rc5+ #1 Not tainted
------------------------------------------------------
kworker/u5:5/793427 is trying to acquire lock:
ffff88813256d028 (&cache->lock){+.+.}-{2:2}, at: btrfs_zone_finish_one_bg+0x5e/0x130
but task is already holding lock:
ffff88810a23a318 (&fs_info->zone_active_bgs_lock){+.+.}-{2:2}, at: btrfs_zone_finish_one_bg+0x34/0x130
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (&fs_info->zone_active_bgs_lock){+.+.}-{2:2}:
...
-> #0 (&cache->lock){+.+.}-{2:2}:
...
This is because we take fs_info->zone_active_bgs_lock after a block_group's
lock in btrfs_zone_activate() while doing the opposite in other places.
Fix the issue by expanding the fs_info->zone_active_bgs_lock's critical
section and taking it before a block_group's lock. |
| In the Linux kernel, the following vulnerability has been resolved:
thermal/debugfs: Fix two locking issues with thermal zone debug
With the current thermal zone locking arrangement in the debugfs code,
user space can open the "mitigations" file for a thermal zone before
the zone's debugfs pointer is set which will result in a NULL pointer
dereference in tze_seq_start().
Moreover, thermal_debug_tz_remove() is not called under the thermal
zone lock, so it can run in parallel with the other functions accessing
the thermal zone's struct thermal_debugfs object. Then, it may clear
tz->debugfs after one of those functions has checked it and the
struct thermal_debugfs object may be freed prematurely.
To address the first problem, pass a pointer to the thermal zone's
struct thermal_debugfs object to debugfs_create_file() in
thermal_debug_tz_add() and make tze_seq_start(), tze_seq_next(),
tze_seq_stop(), and tze_seq_show() retrieve it from s->private
instead of a pointer to the thermal zone object. This will ensure
that tz_debugfs will be valid across the "mitigations" file accesses
until thermal_debugfs_remove_id() called by thermal_debug_tz_remove()
removes that file.
To address the second problem, use tz->lock in thermal_debug_tz_remove()
around the tz->debugfs value check (in case the same thermal zone is
removed at the same time in two different threads) and its reset to NULL.
Cc :6.8+ <stable@vger.kernel.org> # 6.8+ |
| In the Linux kernel, the following vulnerability has been resolved:
efi/unaccepted: touch soft lockup during memory accept
Commit 50e782a86c98 ("efi/unaccepted: Fix soft lockups caused by
parallel memory acceptance") has released the spinlock so other CPUs can
do memory acceptance in parallel and not triggers softlockup on other
CPUs.
However the softlock up was intermittent shown up if the memory of the
TD guest is large, and the timeout of softlockup is set to 1 second:
RIP: 0010:_raw_spin_unlock_irqrestore
Call Trace:
? __hrtimer_run_queues
<IRQ>
? hrtimer_interrupt
? watchdog_timer_fn
? __sysvec_apic_timer_interrupt
? __pfx_watchdog_timer_fn
? sysvec_apic_timer_interrupt
</IRQ>
? __hrtimer_run_queues
<TASK>
? hrtimer_interrupt
? asm_sysvec_apic_timer_interrupt
? _raw_spin_unlock_irqrestore
? __sysvec_apic_timer_interrupt
? sysvec_apic_timer_interrupt
accept_memory
try_to_accept_memory
do_huge_pmd_anonymous_page
get_page_from_freelist
__handle_mm_fault
__alloc_pages
__folio_alloc
? __tdx_hypercall
handle_mm_fault
vma_alloc_folio
do_user_addr_fault
do_huge_pmd_anonymous_page
exc_page_fault
? __do_huge_pmd_anonymous_page
asm_exc_page_fault
__handle_mm_fault
When the local irq is enabled at the end of accept_memory(), the
softlockup detects that the watchdog on single CPU has not been fed for
a while. That is to say, even other CPUs will not be blocked by
spinlock, the current CPU might be stunk with local irq disabled for a
while, which hurts not only nmi watchdog but also softlockup.
Chao Gao pointed out that the memory accept could be time costly and
there was similar report before. Thus to avoid any softlocup detection
during this stage, give the softlockup a flag to skip the timeout check
at the end of accept_memory(), by invoking touch_softlockup_watchdog(). |
| In the Linux kernel, the following vulnerability has been resolved:
USB: core: Fix hang in usb_kill_urb by adding memory barriers
The syzbot fuzzer has identified a bug in which processes hang waiting
for usb_kill_urb() to return. It turns out the issue is not unlinking
the URB; that works just fine. Rather, the problem arises when the
wakeup notification that the URB has completed is not received.
The reason is memory-access ordering on SMP systems. In outline form,
usb_kill_urb() and __usb_hcd_giveback_urb() operating concurrently on
different CPUs perform the following actions:
CPU 0 CPU 1
---------------------------- ---------------------------------
usb_kill_urb(): __usb_hcd_giveback_urb():
... ...
atomic_inc(&urb->reject); atomic_dec(&urb->use_count);
... ...
wait_event(usb_kill_urb_queue,
atomic_read(&urb->use_count) == 0);
if (atomic_read(&urb->reject))
wake_up(&usb_kill_urb_queue);
Confining your attention to urb->reject and urb->use_count, you can
see that the overall pattern of accesses on CPU 0 is:
write urb->reject, then read urb->use_count;
whereas the overall pattern of accesses on CPU 1 is:
write urb->use_count, then read urb->reject.
This pattern is referred to in memory-model circles as SB (for "Store
Buffering"), and it is well known that without suitable enforcement of
the desired order of accesses -- in the form of memory barriers -- it
is entirely possible for one or both CPUs to execute their reads ahead
of their writes. The end result will be that sometimes CPU 0 sees the
old un-decremented value of urb->use_count while CPU 1 sees the old
un-incremented value of urb->reject. Consequently CPU 0 ends up on
the wait queue and never gets woken up, leading to the observed hang
in usb_kill_urb().
The same pattern of accesses occurs in usb_poison_urb() and the
failure pathway of usb_hcd_submit_urb().
The problem is fixed by adding suitable memory barriers. To provide
proper memory-access ordering in the SB pattern, a full barrier is
required on both CPUs. The atomic_inc() and atomic_dec() accesses
themselves don't provide any memory ordering, but since they are
present, we can use the optimized smp_mb__after_atomic() memory
barrier in the various routines to obtain the desired effect.
This patch adds the necessary memory barriers. |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "drm/amd: flush any delayed gfxoff on suspend entry"
commit ab4750332dbe ("drm/amdgpu/sdma5.2: add begin/end_use ring
callbacks") caused GFXOFF control to be used more heavily and the
codepath that was removed from commit 0dee72639533 ("drm/amd: flush any
delayed gfxoff on suspend entry") now can be exercised at suspend again.
Users report that by using GNOME to suspend the lockscreen trigger will
cause SDMA traffic and the system can deadlock.
This reverts commit 0dee726395333fea833eaaf838bc80962df886c8. |
| Improper locking for some Intel(R) TDX Module firmware before version 1.5.13 may allow a privileged user to potentially enable escalation of privilege via local access. |
| A Zigbee Radio Co-Processor (RCP), which is using SiLabs EmberZNet Zigbee stack, was unable to send messages to the host system (CPCd) due to heavy Zigbee traffic, resulting in a Denial of Service (DoS) attack, Only hard reset will bring the device to normal operation |
| A flaw was found in the Linux kernel's ksmbd, a high-performance in-kernel SMB server. The specific flaw exists within the processing of SMB2_SESSION_SETUP and SMB2_LOGOFF commands. The issue results from the lack of proper locking when performing operations on an object. An attacker can leverage this vulnerability to execute code in the context of the kernel. |
| In the Linux kernel, the following vulnerability has been resolved:
aoe: avoid potential deadlock at set_capacity
Move set_capacity() outside of the section procected by (&d->lock).
To avoid possible interrupt unsafe locking scenario:
CPU0 CPU1
---- ----
[1] lock(&bdev->bd_size_lock);
local_irq_disable();
[2] lock(&d->lock);
[3] lock(&bdev->bd_size_lock);
<Interrupt>
[4] lock(&d->lock);
*** DEADLOCK ***
Where [1](&bdev->bd_size_lock) hold by zram_add()->set_capacity().
[2]lock(&d->lock) hold by aoeblk_gdalloc(). And aoeblk_gdalloc()
is trying to acquire [3](&bdev->bd_size_lock) at set_capacity() call.
In this situation an attempt to acquire [4]lock(&d->lock) from
aoecmd_cfg_rsp() will lead to deadlock.
So the simplest solution is breaking lock dependency
[2](&d->lock) -> [3](&bdev->bd_size_lock) by moving set_capacity()
outside. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: don't set RO when shutting down f2fs
Shutdown does not check the error of thaw_super due to readonly, which
causes a deadlock like below.
f2fs_ioc_shutdown(F2FS_GOING_DOWN_FULLSYNC) issue_discard_thread
- bdev_freeze
- freeze_super
- f2fs_stop_checkpoint()
- f2fs_handle_critical_error - sb_start_write
- set RO - waiting
- bdev_thaw
- thaw_super_locked
- return -EINVAL, if sb_rdonly()
- f2fs_stop_discard_thread
-> wait for kthread_stop(discard_thread); |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to avoid potential deadlock
Using f2fs_trylock_op() in f2fs_write_compressed_pages() to avoid potential
deadlock like we did in f2fs_write_single_data_page(). |
| Sensitive data storage in improperly locked memory in Windows Win32K - GRFX allows an authorized attacker to elevate privileges locally. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/gma500: Fix BUG: sleeping function called from invalid context errors
gma_crtc_page_flip() was holding the event_lock spinlock while calling
crtc_funcs->mode_set_base() which takes ww_mutex.
The only reason to hold event_lock is to clear gma_crtc->page_flip_event
on mode_set_base() errors.
Instead unlock it after setting gma_crtc->page_flip_event and on
errors re-take the lock and clear gma_crtc->page_flip_event it
it is still set.
This fixes the following WARN/stacktrace:
[ 512.122953] BUG: sleeping function called from invalid context at kernel/locking/mutex.c:870
[ 512.123004] in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 1253, name: gnome-shell
[ 512.123031] preempt_count: 1, expected: 0
[ 512.123048] RCU nest depth: 0, expected: 0
[ 512.123066] INFO: lockdep is turned off.
[ 512.123080] irq event stamp: 0
[ 512.123094] hardirqs last enabled at (0): [<0000000000000000>] 0x0
[ 512.123134] hardirqs last disabled at (0): [<ffffffff8d0ec28c>] copy_process+0x9fc/0x1de0
[ 512.123176] softirqs last enabled at (0): [<ffffffff8d0ec28c>] copy_process+0x9fc/0x1de0
[ 512.123207] softirqs last disabled at (0): [<0000000000000000>] 0x0
[ 512.123233] Preemption disabled at:
[ 512.123241] [<0000000000000000>] 0x0
[ 512.123275] CPU: 3 PID: 1253 Comm: gnome-shell Tainted: G W 5.19.0+ #1
[ 512.123304] Hardware name: Packard Bell dot s/SJE01_CT, BIOS V1.10 07/23/2013
[ 512.123323] Call Trace:
[ 512.123346] <TASK>
[ 512.123370] dump_stack_lvl+0x5b/0x77
[ 512.123412] __might_resched.cold+0xff/0x13a
[ 512.123458] ww_mutex_lock+0x1e/0xa0
[ 512.123495] psb_gem_pin+0x2c/0x150 [gma500_gfx]
[ 512.123601] gma_pipe_set_base+0x76/0x240 [gma500_gfx]
[ 512.123708] gma_crtc_page_flip+0x95/0x130 [gma500_gfx]
[ 512.123808] drm_mode_page_flip_ioctl+0x57d/0x5d0
[ 512.123897] ? drm_mode_cursor2_ioctl+0x10/0x10
[ 512.123936] drm_ioctl_kernel+0xa1/0x150
[ 512.123984] drm_ioctl+0x21f/0x420
[ 512.124025] ? drm_mode_cursor2_ioctl+0x10/0x10
[ 512.124070] ? rcu_read_lock_bh_held+0xb/0x60
[ 512.124104] ? lock_release+0x1ef/0x2d0
[ 512.124161] __x64_sys_ioctl+0x8d/0xd0
[ 512.124203] do_syscall_64+0x58/0x80
[ 512.124239] ? do_syscall_64+0x67/0x80
[ 512.124267] ? trace_hardirqs_on_prepare+0x55/0xe0
[ 512.124300] ? do_syscall_64+0x67/0x80
[ 512.124340] ? rcu_read_lock_sched_held+0x10/0x80
[ 512.124377] entry_SYSCALL_64_after_hwframe+0x63/0xcd
[ 512.124411] RIP: 0033:0x7fcc4a70740f
[ 512.124442] Code: 00 48 89 44 24 18 31 c0 48 8d 44 24 60 c7 04 24 10 00 00 00 48 89 44 24 08 48 8d 44 24 20 48 89 44 24 10 b8 10 00 00 00 0f 05 <89> c2 3d 00 f0 ff ff 77 18 48 8b 44 24 18 64 48 2b 04 25 28 00 00
[ 512.124470] RSP: 002b:00007ffda73f5390 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
[ 512.124503] RAX: ffffffffffffffda RBX: 000055cc9e474500 RCX: 00007fcc4a70740f
[ 512.124524] RDX: 00007ffda73f5420 RSI: 00000000c01864b0 RDI: 0000000000000009
[ 512.124544] RBP: 00007ffda73f5420 R08: 000055cc9c0b0cb0 R09: 0000000000000034
[ 512.124564] R10: 0000000000000000 R11: 0000000000000246 R12: 00000000c01864b0
[ 512.124584] R13: 0000000000000009 R14: 000055cc9df484d0 R15: 000055cc9af5d0c0
[ 512.124647] </TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix WARNING "do not call blocking ops when !TASK_RUNNING"
wait_event_timeout() will set the state of the current
task to TASK_UNINTERRUPTIBLE, before doing the condition check. This
means that ksmbd_durable_scavenger_alive() will try to acquire the mutex
while already in a sleeping state. The scheduler warns us by giving
the following warning:
do not call blocking ops when !TASK_RUNNING; state=2 set at
[<0000000061515a6f>] prepare_to_wait_event+0x9f/0x6c0
WARNING: CPU: 2 PID: 4147 at kernel/sched/core.c:10099 __might_sleep+0x12f/0x160
mutex lock is not needed in ksmbd_durable_scavenger_alive(). |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: do not defer rule destruction via call_rcu
nf_tables_chain_destroy can sleep, it can't be used from call_rcu
callbacks.
Moreover, nf_tables_rule_release() is only safe for error unwinding,
while transaction mutex is held and the to-be-desroyed rule was not
exposed to either dataplane or dumps, as it deactives+frees without
the required synchronize_rcu() in-between.
nft_rule_expr_deactivate() callbacks will change ->use counters
of other chains/sets, see e.g. nft_lookup .deactivate callback, these
must be serialized via transaction mutex.
Also add a few lockdep asserts to make this more explicit.
Calling synchronize_rcu() isn't ideal, but fixing this without is hard
and way more intrusive. As-is, we can get:
WARNING: .. net/netfilter/nf_tables_api.c:5515 nft_set_destroy+0x..
Workqueue: events nf_tables_trans_destroy_work
RIP: 0010:nft_set_destroy+0x3fe/0x5c0
Call Trace:
<TASK>
nf_tables_trans_destroy_work+0x6b7/0xad0
process_one_work+0x64a/0xce0
worker_thread+0x613/0x10d0
In case the synchronize_rcu becomes an issue, we can explore alternatives.
One way would be to allocate nft_trans_rule objects + one nft_trans_chain
object, deactivate the rules + the chain and then defer the freeing to the
nft destroy workqueue. We'd still need to keep the synchronize_rcu path as
a fallback to handle -ENOMEM corner cases though. |
| In the Linux kernel, the following vulnerability has been resolved:
drm: zynqmp_dpsub: Always register bridge
We must always register the DRM bridge, since zynqmp_dp_hpd_work_func
calls drm_bridge_hpd_notify, which in turn expects hpd_mutex to be
initialized. We do this before zynqmp_dpsub_drm_init since that calls
drm_bridge_attach. This fixes the following lockdep warning:
[ 19.217084] ------------[ cut here ]------------
[ 19.227530] DEBUG_LOCKS_WARN_ON(lock->magic != lock)
[ 19.227768] WARNING: CPU: 0 PID: 140 at kernel/locking/mutex.c:582 __mutex_lock+0x4bc/0x550
[ 19.241696] Modules linked in:
[ 19.244937] CPU: 0 PID: 140 Comm: kworker/0:4 Not tainted 6.6.20+ #96
[ 19.252046] Hardware name: xlnx,zynqmp (DT)
[ 19.256421] Workqueue: events zynqmp_dp_hpd_work_func
[ 19.261795] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 19.269104] pc : __mutex_lock+0x4bc/0x550
[ 19.273364] lr : __mutex_lock+0x4bc/0x550
[ 19.277592] sp : ffffffc085c5bbe0
[ 19.281066] x29: ffffffc085c5bbe0 x28: 0000000000000000 x27: ffffff88009417f8
[ 19.288624] x26: ffffff8800941788 x25: ffffff8800020008 x24: ffffffc082aa3000
[ 19.296227] x23: ffffffc080d90e3c x22: 0000000000000002 x21: 0000000000000000
[ 19.303744] x20: 0000000000000000 x19: ffffff88002f5210 x18: 0000000000000000
[ 19.311295] x17: 6c707369642e3030 x16: 3030613464662072 x15: 0720072007200720
[ 19.318922] x14: 0000000000000000 x13: 284e4f5f4e524157 x12: 0000000000000001
[ 19.326442] x11: 0001ffc085c5b940 x10: 0001ff88003f388b x9 : 0001ff88003f3888
[ 19.334003] x8 : 0001ff88003f3888 x7 : 0000000000000000 x6 : 0000000000000000
[ 19.341537] x5 : 0000000000000000 x4 : 0000000000001668 x3 : 0000000000000000
[ 19.349054] x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffffff88003f3880
[ 19.356581] Call trace:
[ 19.359160] __mutex_lock+0x4bc/0x550
[ 19.363032] mutex_lock_nested+0x24/0x30
[ 19.367187] drm_bridge_hpd_notify+0x2c/0x6c
[ 19.371698] zynqmp_dp_hpd_work_func+0x44/0x54
[ 19.376364] process_one_work+0x3ac/0x988
[ 19.380660] worker_thread+0x398/0x694
[ 19.384736] kthread+0x1bc/0x1c0
[ 19.388241] ret_from_fork+0x10/0x20
[ 19.392031] irq event stamp: 183
[ 19.395450] hardirqs last enabled at (183): [<ffffffc0800b9278>] finish_task_switch.isra.0+0xa8/0x2d4
[ 19.405140] hardirqs last disabled at (182): [<ffffffc081ad3754>] __schedule+0x714/0xd04
[ 19.413612] softirqs last enabled at (114): [<ffffffc080133de8>] srcu_invoke_callbacks+0x158/0x23c
[ 19.423128] softirqs last disabled at (110): [<ffffffc080133de8>] srcu_invoke_callbacks+0x158/0x23c
[ 19.432614] ---[ end trace 0000000000000000 ]---
(cherry picked from commit 61ba791c4a7a09a370c45b70a81b8c7d4cf6b2ae) |
| A memory corruption vulnerability was addressed with improved locking. This issue is fixed in macOS Monterey 12.5, macOS Big Sur 11.6.8, Security Update 2022-005 Catalina. An app may be able to execute arbitrary code with kernel privileges. |
| A race condition flaw was found in the Linux kernel sound subsystem due to improper locking. It could lead to a NULL pointer dereference while handling the SNDCTL_DSP_SYNC ioctl. A privileged local user (root or member of the audio group) could use this flaw to crash the system, resulting in a denial of service condition |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix deadlock in smb2_find_smb_tcon()
Unlock cifs_tcp_ses_lock before calling cifs_put_smb_ses() to avoid such
deadlock. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: Fix deadlocks with kctl removals at disconnection
In snd_card_disconnect(), we set card->shutdown flag at the beginning,
call callbacks and do sync for card->power_ref_sleep waiters at the
end. The callback may delete a kctl element, and this can lead to a
deadlock when the device was in the suspended state. Namely:
* A process waits for the power up at snd_power_ref_and_wait() in
snd_ctl_info() or read/write() inside card->controls_rwsem.
* The system gets disconnected meanwhile, and the driver tries to
delete a kctl via snd_ctl_remove*(); it tries to take
card->controls_rwsem again, but this is already locked by the
above. Since the sleeper isn't woken up, this deadlocks.
An easy fix is to wake up sleepers before processing the driver
disconnect callbacks but right after setting the card->shutdown flag.
Then all sleepers will abort immediately, and the code flows again.
So, basically this patch moves the wait_event() call at the right
timing. While we're at it, just to be sure, call wait_event_all()
instead of wait_event(), although we don't use exclusive events on
this queue for now. |