| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| vLLM is an inference and serving engine for large language models (LLMs). From versions 0.10.2 to before 0.11.1, a memory corruption vulnerability could lead to a crash (denial-of-service) and potentially remote code execution (RCE), exists in the Completions API endpoint. When processing user-supplied prompt embeddings, the endpoint loads serialized tensors using torch.load() without sufficient validation. Due to a change introduced in PyTorch 2.8.0, sparse tensor integrity checks are disabled by default. As a result, maliciously crafted tensors can bypass internal bounds checks and trigger an out-of-bounds memory write during the call to to_dense(). This memory corruption can crash vLLM and potentially lead to code execution on the server hosting vLLM. This issue has been patched in version 0.11.1. |
| In Modem, there is a possible system crash due to a missing bounds check. This could lead to remote denial of service, if a UE has connected to a rogue base station controlled by the attacker, with no additional execution privileges needed. User interaction is not needed for exploitation. Patch ID: MOLY01661195; Issue ID: MSV-4297. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/omap: Fix buffer overflow in debugfs
There are two issues here:
1) The "len" variable needs to be checked before the very first write.
Otherwise if omap2_iommu_dump_ctx() with "bytes" less than 32 it is a
buffer overflow.
2) The snprintf() function returns the number of bytes that *would* have
been copied if there were enough space. But we want to know the
number of bytes which were *actually* copied so use scnprintf()
instead. |
| In the Linux kernel, the following vulnerability has been resolved:
ACPI: tables: FPDT: Don't call acpi_os_map_memory() on invalid phys address
On a Packard Bell Dot SC (Intel Atom N2600 model) there is a FPDT table
which contains invalid physical addresses, with high bits set which fall
outside the range of the CPU-s supported physical address range.
Calling acpi_os_map_memory() on such an invalid phys address leads to
the below WARN_ON in ioremap triggering resulting in an oops/stacktrace.
Add code to verify the physical address before calling acpi_os_map_memory()
to fix / avoid the oops.
[ 1.226900] ioremap: invalid physical address 3001000000000000
[ 1.226949] ------------[ cut here ]------------
[ 1.226962] WARNING: CPU: 1 PID: 1 at arch/x86/mm/ioremap.c:200 __ioremap_caller.cold+0x43/0x5f
[ 1.226996] Modules linked in:
[ 1.227016] CPU: 1 PID: 1 Comm: swapper/0 Not tainted 6.0.0-rc3+ #490
[ 1.227029] Hardware name: Packard Bell dot s/SJE01_CT, BIOS V1.10 07/23/2013
[ 1.227038] RIP: 0010:__ioremap_caller.cold+0x43/0x5f
[ 1.227054] Code: 96 00 00 e9 f8 af 24 ff 89 c6 48 c7 c7 d8 0c 84 99 e8 6a 96 00 00 e9 76 af 24 ff 48 89 fe 48 c7 c7 a8 0c 84 99 e8 56 96 00 00 <0f> 0b e9 60 af 24 ff 48 8b 34 24 48 c7 c7 40 0d 84 99 e8 3f 96 00
[ 1.227067] RSP: 0000:ffffb18c40033d60 EFLAGS: 00010286
[ 1.227084] RAX: 0000000000000032 RBX: 3001000000000000 RCX: 0000000000000000
[ 1.227095] RDX: 0000000000000001 RSI: 00000000ffffdfff RDI: 00000000ffffffff
[ 1.227105] RBP: 3001000000000000 R08: 0000000000000000 R09: ffffb18c40033c18
[ 1.227115] R10: 0000000000000003 R11: ffffffff99d62fe8 R12: 0000000000000008
[ 1.227124] R13: 0003001000000000 R14: 0000000000001000 R15: 3001000000000000
[ 1.227135] FS: 0000000000000000(0000) GS:ffff913a3c080000(0000) knlGS:0000000000000000
[ 1.227146] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 1.227156] CR2: 0000000000000000 CR3: 0000000018c26000 CR4: 00000000000006e0
[ 1.227167] Call Trace:
[ 1.227176] <TASK>
[ 1.227185] ? acpi_os_map_iomem+0x1c9/0x1e0
[ 1.227215] ? kmem_cache_alloc_trace+0x187/0x370
[ 1.227254] acpi_os_map_iomem+0x1c9/0x1e0
[ 1.227288] acpi_init_fpdt+0xa8/0x253
[ 1.227308] ? acpi_debugfs_init+0x1f/0x1f
[ 1.227339] do_one_initcall+0x5a/0x300
[ 1.227406] ? rcu_read_lock_sched_held+0x3f/0x80
[ 1.227442] kernel_init_freeable+0x28b/0x2cc
[ 1.227512] ? rest_init+0x170/0x170
[ 1.227538] kernel_init+0x16/0x140
[ 1.227552] ret_from_fork+0x1f/0x30
[ 1.227639] </TASK>
[ 1.227647] irq event stamp: 186819
[ 1.227656] hardirqs last enabled at (186825): [<ffffffff98184a6e>] __up_console_sem+0x5e/0x70
[ 1.227672] hardirqs last disabled at (186830): [<ffffffff98184a53>] __up_console_sem+0x43/0x70
[ 1.227686] softirqs last enabled at (186576): [<ffffffff980fbc9d>] __irq_exit_rcu+0xed/0x160
[ 1.227701] softirqs last disabled at (186569): [<ffffffff980fbc9d>] __irq_exit_rcu+0xed/0x160
[ 1.227715] ---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: s390/diag: fix racy access of physical cpu number in diag 9c handler
We do check for target CPU == -1, but this might change at the time we
are going to use it. Hold the physical target CPU in a local variable to
avoid out-of-bound accesses to the cpu arrays. |
| Firmware in SDMC NE6037 routers prior to version 7.1.12.2.44Â has a network diagnostics tool vulnerable to a shell command injection attacks.
In order to exploit this vulnerability, an attacker has to log in to the router's administrative portal, which by default is reachable only via LAN ports. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: Intel: avs: Fix potential RX buffer overflow
If an event caused firmware to return invalid RX size for
LARGE_CONFIG_GET, memcpy_fromio() could end up copying too many bytes.
Fix by utilizing min_t(). |
| The Metro Development Server, which is opened by the React Native Community CLI, binds to external interfaces by default. The server exposes an endpoint that is vulnerable to OS command injection. This allows unauthenticated network attackers to send a POST request to the server and run arbitrary executables. On Windows, the attackers can also execute arbitrary shell commands with fully controlled arguments. |
| An integer overflow in xmlmemory.c in libxml2 before 2.9.5, as used in Google Chrome prior to 62.0.3202.62 and other products, allowed a remote attacker to potentially exploit heap corruption via a crafted XML file. |
| In mmdvfs, there is a possible out of bounds write due to a missing bounds check. This could lead to local escalation of privilege if a malicious actor has already obtained the System privilege. User interaction is not needed for exploitation. Patch ID: ALPS10267218; Issue ID: MSV-5032. |
| In smi, there is a possible out of bounds write due to a missing bounds check. This could lead to local escalation of privilege if a malicious actor has already obtained the System privilege. User interaction is not needed for exploitation. Patch ID: ALPS10259774; Issue ID: MSV-5029. |
| In display, there is a possible out of bounds write due to an integer overflow. This could lead to local escalation of privilege if a malicious actor has already obtained the System privilege. User interaction is not needed for exploitation. Patch ID: ALPS10196993; Issue ID: MSV-4807. |
| In display, there is a possible out of bounds write due to a missing bounds check. This could lead to local escalation of privilege if a malicious actor has already obtained the System privilege. User interaction is not needed for exploitation. Patch ID: ALPS10196993; Issue ID: MSV-4804. |
| In display, there is a possible out of bounds write due to a missing bounds check. This could lead to local escalation of privilege if a malicious actor has already obtained the System privilege. User interaction is not needed for exploitation. Patch ID: ALPS10184870; Issue ID: MSV-4752. |
| In display, there is a possible out of bounds write due to a missing bounds check. This could lead to local escalation of privilege if a malicious actor has already obtained the System privilege. User interaction is not needed for exploitation. Patch ID: ALPS10196993; Issue ID: MSV-4796. |
| Command injection vulnerability in the operating system in Circutor SGE-PLC1000/SGE-PLC50 v9.0.2 through the 'GetDNS()', 'CheckPing()' and 'TraceRoute()' functions. |
| Out-of-bounds write for some Intel(R) QuickAssist Technology software before version 2.2.0 may allow an authenticated user to potentially enable escalation of privilege via local access. |
| A flaw was found in Samba, in the front-end WINS hook handling: NetBIOS names from registration packets are passed to a shell without proper validation or escaping. Unsanitized NetBIOS name data from WINS registration packets are inserted into a shell command and executed by the Samba Active Directory Domain Controller’s wins hook, allowing an unauthenticated network attacker to achieve remote command execution as the Samba process. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: mediatek: mt8183: Add back SSPM related clocks
This reverts commit 860690a93ef23b567f781c1b631623e27190f101.
On the MT8183, the SSPM related clocks were removed claiming a lack of
usage. This however causes some issues when the driver was converted to
the new simple-probe mechanism. This mechanism allocates enough space
for all the clocks defined in the clock driver, not the highest index
in the DT binding. This leads to out-of-bound writes if their are holes
in the DT binding or the driver (due to deprecated or unimplemented
clocks). These errors can go unnoticed and cause memory corruption,
leading to crashes in unrelated areas, or nothing at all. KASAN will
detect them.
Add the SSPM related clocks back to the MT8183 clock driver to fully
implement the DT binding. The SSPM clocks are for the power management
co-processor, and should never be turned off. They are marked as such. |
| Unauthenticated OS Command Injection (restore_settings.php) in DB Electronica Telecomunicazioni S.p.A. Mozart FM Transmitter versions 30, 50, 100, 300, 500, 1000, 2000, 3000, 3500, 6000, 7000 allows an attacker to perform URL-decoded name parameter passed to exec() allows remote code execution.
The `/var/tdf/restore_settings.php` endpoint passes user-controlled `$_GET["name"]` parameter through `urldecode()` directly into `exec()` without validation or escaping. Attackers can inject arbitrary shell commands using metacharacters (`;`, `|`, `&&`, etc.) to achieve unauthenticated remote code execution as the web server user. |