| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Upsonic Cloudpickle Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Upsonic. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the add_tool endpoint, which listens on TCP port 7541 by default. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of the service account. Was ZDI-CAN-26845. |
| Langflow Disk Cache Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Langflow. Authentication is required to exploit this vulnerability.
The specific flaw exists within the disk cache service. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of the service account. Was ZDI-CAN-27919. |
| Langflow PythonFunction Code Injection Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Langflow. Attack vectors and exploitability will vary depending on the configuration of the product.
The specific flaw exists within the handling of Python function components. Depending upon product configuration, an attacker may be able to introduce custom Python code into a workflow. An attacker can leverage this vulnerability to execute code in the context of the application. Was ZDI-CAN-27497. |
| Langflow exec_globals Inclusion of Functionality from Untrusted Control Sphere Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Langflow. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the handling of the exec_globals parameter provided to the validate endpoint. The issue results from the inclusion of a resource from an untrusted control sphere. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-27325. |
| Langflow code Code Injection Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Langflow. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the handling of the code parameter provided to the validate endpoint. The issue results from the lack of proper validation of a user-supplied string before using it to execute Python code. An attacker can leverage this vulnerability to execute code in the context of root.
. Was ZDI-CAN-27322. |
| GPT Academic upload Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GPT Academic. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the upload endpoint. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-27957. |
| GPT Academic run_in_subprocess_wrapper_func Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GPT Academic. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the run_in_subprocess_wrapper_func function. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-27958. |
| GPT Academic stream_daas Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GPT Academic. Interaction with a malicious DAAS server is required to exploit this vulnerability but attack vectors may vary depending on the implementation.
The specific flaw exists within the stream_daas function. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-27956. |
| Foundation Agents MetaGPT actionoutput_str_to_mapping Code Injection Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Foundation Agents MetaGPT. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the actionoutput_str_to_mapping function. The issue results from the lack of proper validation of a user-supplied string before using it to execute Python code. An attacker can leverage this vulnerability to execute code in the context of the service account. Was ZDI-CAN-28124. |
| Foundation Agents MetaGPT deserialize_message Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Foundation Agents MetaGPT. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the deserialize_message function. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of the service account. Was ZDI-CAN-28121. |
| In the Linux kernel, the following vulnerability has been resolved:
idpf: Fix RSS LUT NULL ptr issue after soft reset
During soft reset, the RSS LUT is freed and not restored unless the
interface is up. If an ethtool command that accesses the rss lut is
attempted immediately after reset, it will result in NULL ptr
dereference. Also, there is no need to reset the rss lut if the soft reset
does not involve queue count change.
After soft reset, set the RSS LUT to default values based on the updated
queue count only if the reset was a result of a queue count change and
the LUT was not configured by the user. In all other cases, don't touch
the LUT.
Steps to reproduce:
** Bring the interface down (if up)
ifconfig eth1 down
** update the queue count (eg., 27->20)
ethtool -L eth1 combined 20
** display the RSS LUT
ethtool -x eth1
[82375.558338] BUG: kernel NULL pointer dereference, address: 0000000000000000
[82375.558373] #PF: supervisor read access in kernel mode
[82375.558391] #PF: error_code(0x0000) - not-present page
[82375.558408] PGD 0 P4D 0
[82375.558421] Oops: Oops: 0000 [#1] SMP NOPTI
<snip>
[82375.558516] RIP: 0010:idpf_get_rxfh+0x108/0x150 [idpf]
[82375.558786] Call Trace:
[82375.558793] <TASK>
[82375.558804] rss_prepare.isra.0+0x187/0x2a0
[82375.558827] rss_prepare_data+0x3a/0x50
[82375.558845] ethnl_default_doit+0x13d/0x3e0
[82375.558863] genl_family_rcv_msg_doit+0x11f/0x180
[82375.558886] genl_rcv_msg+0x1ad/0x2b0
[82375.558902] ? __pfx_ethnl_default_doit+0x10/0x10
[82375.558920] ? __pfx_genl_rcv_msg+0x10/0x10
[82375.558937] netlink_rcv_skb+0x58/0x100
[82375.558957] genl_rcv+0x2c/0x50
[82375.558971] netlink_unicast+0x289/0x3e0
[82375.558988] netlink_sendmsg+0x215/0x440
[82375.559005] __sys_sendto+0x234/0x240
[82375.559555] __x64_sys_sendto+0x28/0x30
[82375.560068] x64_sys_call+0x1909/0x1da0
[82375.560576] do_syscall_64+0x7a/0xfa0
[82375.561076] ? clear_bhb_loop+0x60/0xb0
[82375.561567] entry_SYSCALL_64_after_hwframe+0x76/0x7e
<snip> |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: check that server is running in unlock_filesystem
If we are trying to unlock the filesystem via an administrative
interface and nfsd isn't running, it crashes the server. This
happens currently because nfsd4_revoke_states() access state
structures (eg., conf_id_hashtbl) that has been freed as a part
of the server shutdown.
[ 59.465072] Call trace:
[ 59.465308] nfsd4_revoke_states+0x1b4/0x898 [nfsd] (P)
[ 59.465830] write_unlock_fs+0x258/0x440 [nfsd]
[ 59.466278] nfsctl_transaction_write+0xb0/0x120 [nfsd]
[ 59.466780] vfs_write+0x1f0/0x938
[ 59.467088] ksys_write+0xfc/0x1f8
[ 59.467395] __arm64_sys_write+0x74/0xb8
[ 59.467746] invoke_syscall.constprop.0+0xdc/0x1e8
[ 59.468177] do_el0_svc+0x154/0x1d8
[ 59.468489] el0_svc+0x40/0xe0
[ 59.468767] el0t_64_sync_handler+0xa0/0xe8
[ 59.469138] el0t_64_sync+0x1ac/0x1b0
Ensure this can't happen by taking the nfsd_mutex and checking that
the server is still up, and then holding the mutex across the call to
nfsd4_revoke_states(). |
| In the Linux kernel, the following vulnerability has been resolved:
gpiolib: fix race condition for gdev->srcu
If two drivers were calling gpiochip_add_data_with_key(), one may be
traversing the srcu-protected list in gpio_name_to_desc(), meanwhile
other has just added its gdev in gpiodev_add_to_list_unlocked().
This creates a non-mutexed and non-protected timeframe, when one
instance is dereferencing and using &gdev->srcu, before the other
has initialized it, resulting in crash:
[ 4.935481] Unable to handle kernel paging request at virtual address ffff800272bcc000
[ 4.943396] Mem abort info:
[ 4.943400] ESR = 0x0000000096000005
[ 4.943403] EC = 0x25: DABT (current EL), IL = 32 bits
[ 4.943407] SET = 0, FnV = 0
[ 4.943410] EA = 0, S1PTW = 0
[ 4.943413] FSC = 0x05: level 1 translation fault
[ 4.943416] Data abort info:
[ 4.943418] ISV = 0, ISS = 0x00000005, ISS2 = 0x00000000
[ 4.946220] CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[ 4.955261] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[ 4.955268] swapper pgtable: 4k pages, 48-bit VAs, pgdp=0000000038e6c000
[ 4.961449] [ffff800272bcc000] pgd=0000000000000000
[ 4.969203] , p4d=1000000039739003
[ 4.979730] , pud=0000000000000000
[ 4.980210] phandle (CPU): 0x0000005e, phandle (BE): 0x5e000000 for node "reset"
[ 4.991736] Internal error: Oops: 0000000096000005 [#1] PREEMPT SMP
...
[ 5.121359] pc : __srcu_read_lock+0x44/0x98
[ 5.131091] lr : gpio_name_to_desc+0x60/0x1a0
[ 5.153671] sp : ffff8000833bb430
[ 5.298440]
[ 5.298443] Call trace:
[ 5.298445] __srcu_read_lock+0x44/0x98
[ 5.309484] gpio_name_to_desc+0x60/0x1a0
[ 5.320692] gpiochip_add_data_with_key+0x488/0xf00
5.946419] ---[ end trace 0000000000000000 ]---
Move initialization code for gdev fields before it is added to
gpio_devices, with adjacent initialization code.
Adjust goto statements to reflect modified order of operations
[Bartosz: fixed a build issue, removed stray newline] |
| In the Linux kernel, the following vulnerability has been resolved:
lib/buildid: use __kernel_read() for sleepable context
Prevent a "BUG: unable to handle kernel NULL pointer dereference in
filemap_read_folio".
For the sleepable context, convert freader to use __kernel_read() instead
of direct page cache access via read_cache_folio(). This simplifies the
faultable code path by using the standard kernel file reading interface
which handles all the complexity of reading file data.
At the moment we are not changing the code for non-sleepable context which
uses filemap_get_folio() and only succeeds if the target folios are
already in memory and up-to-date. The reason is to keep the patch simple
and easier to backport to stable kernels.
Syzbot repro does not crash the kernel anymore and the selftests run
successfully.
In the follow up we will make __kernel_read() with IOCB_NOWAIT work for
non-sleepable contexts. In addition, I would like to replace the
secretmem check with a more generic approach and will add fstest for the
buildid code. |
| Managed Switch Port Mapping Tool 2.85.2 contains a denial of service vulnerability that allows attackers to crash the application by creating an oversized buffer. Attackers can generate a 10,000-character buffer and paste it into the IP Address and SNMP Community Name fields to trigger the application crash. |
| dataSIMS Avionics ARINC 664-1 version 4.5.3 contains a local buffer overflow vulnerability that allows attackers to overwrite memory by manipulating the milstd1553result.txt file. Attackers can craft a malicious file with carefully constructed payload and alignment sections to potentially execute arbitrary code on the Windows system. |
| KMSpico 17.1.0.0 contains an unquoted service path vulnerability in the Service KMSELDI configuration that allows local attackers to potentially execute arbitrary code. Attackers can exploit the unquoted binary path in C:\Program Files\KMSpico\Service_KMS.exe to inject malicious executables and escalate privileges. |
| HTC IPTInstaller 4.0.9 contains an unquoted service path vulnerability in the PassThru Service configuration. Attackers can exploit the unquoted binary path to inject and execute malicious code with elevated LocalSystem privileges. |
| Incorrect access control in the authRoutes function of SpringBlade v4.5.0 allows attackers with low-level privileges to escalate privileges. |
| PEEL Shopping 9.3.0 contains a stored cross-site scripting vulnerability in the 'Comments / Special Instructions' parameter of the purchase page. Attackers can inject malicious JavaScript payloads that will execute when the page is refreshed, potentially allowing client-side script execution. |