Search Results (16709 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-40251 1 Linux 1 Linux Kernel 2025-12-04 7.1 High
In the Linux kernel, the following vulnerability has been resolved: devlink: rate: Unset parent pointer in devl_rate_nodes_destroy The function devl_rate_nodes_destroy is documented to "Unset parent for all rate objects". However, it was only calling the driver-specific `rate_leaf_parent_set` or `rate_node_parent_set` ops and decrementing the parent's refcount, without actually setting the `devlink_rate->parent` pointer to NULL. This leaves a dangling pointer in the `devlink_rate` struct, which cause refcount error in netdevsim[1] and mlx5[2]. In addition, this is inconsistent with the behavior of `devlink_nl_rate_parent_node_set`, where the parent pointer is correctly cleared. This patch fixes the issue by explicitly setting `devlink_rate->parent` to NULL after notifying the driver, thus fulfilling the function's documented behavior for all rate objects. [1] repro steps: echo 1 > /sys/bus/netdevsim/new_device devlink dev eswitch set netdevsim/netdevsim1 mode switchdev echo 1 > /sys/bus/netdevsim/devices/netdevsim1/sriov_numvfs devlink port function rate add netdevsim/netdevsim1/test_node devlink port function rate set netdevsim/netdevsim1/128 parent test_node echo 1 > /sys/bus/netdevsim/del_device dmesg: refcount_t: decrement hit 0; leaking memory. WARNING: CPU: 8 PID: 1530 at lib/refcount.c:31 refcount_warn_saturate+0x42/0xe0 CPU: 8 UID: 0 PID: 1530 Comm: bash Not tainted 6.18.0-rc4+ #1 NONE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 RIP: 0010:refcount_warn_saturate+0x42/0xe0 Call Trace: <TASK> devl_rate_leaf_destroy+0x8d/0x90 __nsim_dev_port_del+0x6c/0x70 [netdevsim] nsim_dev_reload_destroy+0x11c/0x140 [netdevsim] nsim_drv_remove+0x2b/0xb0 [netdevsim] device_release_driver_internal+0x194/0x1f0 bus_remove_device+0xc6/0x130 device_del+0x159/0x3c0 device_unregister+0x1a/0x60 del_device_store+0x111/0x170 [netdevsim] kernfs_fop_write_iter+0x12e/0x1e0 vfs_write+0x215/0x3d0 ksys_write+0x5f/0xd0 do_syscall_64+0x55/0x10f0 entry_SYSCALL_64_after_hwframe+0x4b/0x53 [2] devlink dev eswitch set pci/0000:08:00.0 mode switchdev devlink port add pci/0000:08:00.0 flavour pcisf pfnum 0 sfnum 1000 devlink port function rate add pci/0000:08:00.0/group1 devlink port function rate set pci/0000:08:00.0/32768 parent group1 modprobe -r mlx5_ib mlx5_fwctl mlx5_core dmesg: refcount_t: decrement hit 0; leaking memory. WARNING: CPU: 7 PID: 16151 at lib/refcount.c:31 refcount_warn_saturate+0x42/0xe0 CPU: 7 UID: 0 PID: 16151 Comm: bash Not tainted 6.17.0-rc7_for_upstream_min_debug_2025_10_02_12_44 #1 NONE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014 RIP: 0010:refcount_warn_saturate+0x42/0xe0 Call Trace: <TASK> devl_rate_leaf_destroy+0x8d/0x90 mlx5_esw_offloads_devlink_port_unregister+0x33/0x60 [mlx5_core] mlx5_esw_offloads_unload_rep+0x3f/0x50 [mlx5_core] mlx5_eswitch_unload_sf_vport+0x40/0x90 [mlx5_core] mlx5_sf_esw_event+0xc4/0x120 [mlx5_core] notifier_call_chain+0x33/0xa0 blocking_notifier_call_chain+0x3b/0x50 mlx5_eswitch_disable_locked+0x50/0x110 [mlx5_core] mlx5_eswitch_disable+0x63/0x90 [mlx5_core] mlx5_unload+0x1d/0x170 [mlx5_core] mlx5_uninit_one+0xa2/0x130 [mlx5_core] remove_one+0x78/0xd0 [mlx5_core] pci_device_remove+0x39/0xa0 device_release_driver_internal+0x194/0x1f0 unbind_store+0x99/0xa0 kernfs_fop_write_iter+0x12e/0x1e0 vfs_write+0x215/0x3d0 ksys_write+0x5f/0xd0 do_syscall_64+0x53/0x1f0 entry_SYSCALL_64_after_hwframe+0x4b/0x53
CVE-2025-40230 1 Linux 1 Linux Kernel 2025-12-04 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm: prevent poison consumption when splitting THP When performing memory error injection on a THP (Transparent Huge Page) mapped to userspace on an x86 server, the kernel panics with the following trace. The expected behavior is to terminate the affected process instead of panicking the kernel, as the x86 Machine Check code can recover from an in-userspace #MC. mce: [Hardware Error]: CPU 0: Machine Check Exception: f Bank 3: bd80000000070134 mce: [Hardware Error]: RIP 10:<ffffffff8372f8bc> {memchr_inv+0x4c/0xf0} mce: [Hardware Error]: TSC afff7bbff88a ADDR 1d301b000 MISC 80 PPIN 1e741e77539027db mce: [Hardware Error]: PROCESSOR 0:d06d0 TIME 1758093249 SOCKET 0 APIC 0 microcode 80000320 mce: [Hardware Error]: Run the above through 'mcelog --ascii' mce: [Hardware Error]: Machine check: Data load in unrecoverable area of kernel Kernel panic - not syncing: Fatal local machine check The root cause of this panic is that handling a memory failure triggered by an in-userspace #MC necessitates splitting the THP. The splitting process employs a mechanism, implemented in try_to_map_unused_to_zeropage(), which reads the pages in the THP to identify zero-filled pages. However, reading the pages in the THP results in a second in-kernel #MC, occurring before the initial memory_failure() completes, ultimately leading to a kernel panic. See the kernel panic call trace on the two #MCs. First Machine Check occurs // [1] memory_failure() // [2] try_to_split_thp_page() split_huge_page() split_huge_page_to_list_to_order() __folio_split() // [3] remap_page() remove_migration_ptes() remove_migration_pte() try_to_map_unused_to_zeropage() // [4] memchr_inv() // [5] Second Machine Check occurs // [6] Kernel panic [1] Triggered by accessing a hardware-poisoned THP in userspace, which is typically recoverable by terminating the affected process. [2] Call folio_set_has_hwpoisoned() before try_to_split_thp_page(). [3] Pass the RMP_USE_SHARED_ZEROPAGE remap flag to remap_page(). [4] Try to map the unused THP to zeropage. [5] Re-access pages in the hw-poisoned THP in the kernel. [6] Triggered in-kernel, leading to a panic kernel. In Step[2], memory_failure() sets the poisoned flag on the page in the THP by TestSetPageHWPoison() before calling try_to_split_thp_page(). As suggested by David Hildenbrand, fix this panic by not accessing to the poisoned page in the THP during zeropage identification, while continuing to scan unaffected pages in the THP for possible zeropage mapping. This prevents a second in-kernel #MC that would cause kernel panic in Step[4]. Thanks to Andrew Zaborowski for his initial work on fixing this issue.
CVE-2025-40234 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: platform/x86: alienware-wmi-wmax: Fix NULL pointer dereference in sleep handlers Devices without the AWCC interface don't initialize `awcc`. Add a check before dereferencing it in sleep handlers.
CVE-2025-40265 1 Linux 1 Linux Kernel 2025-12-04 4.1 Medium
In the Linux kernel, the following vulnerability has been resolved: vfat: fix missing sb_min_blocksize() return value checks When emulating an nvme device on qemu with both logical_block_size and physical_block_size set to 8 KiB, but without format, a kernel panic was triggered during the early boot stage while attempting to mount a vfat filesystem. [95553.682035] EXT4-fs (nvme0n1): unable to set blocksize [95553.684326] EXT4-fs (nvme0n1): unable to set blocksize [95553.686501] EXT4-fs (nvme0n1): unable to set blocksize [95553.696448] ISOFS: unsupported/invalid hardware sector size 8192 [95553.697117] ------------[ cut here ]------------ [95553.697567] kernel BUG at fs/buffer.c:1582! [95553.697984] Oops: invalid opcode: 0000 [#1] SMP NOPTI [95553.698602] CPU: 0 UID: 0 PID: 7212 Comm: mount Kdump: loaded Not tainted 6.18.0-rc2+ #38 PREEMPT(voluntary) [95553.699511] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014 [95553.700534] RIP: 0010:folio_alloc_buffers+0x1bb/0x1c0 [95553.701018] Code: 48 8b 15 e8 93 18 02 65 48 89 35 e0 93 18 02 48 83 c4 10 5b 41 5c 41 5d 41 5e 41 5f 5d 31 d2 31 c9 31 f6 31 ff c3 cc cc cc cc <0f> 0b 90 66 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 0f [95553.702648] RSP: 0018:ffffd1b0c676f990 EFLAGS: 00010246 [95553.703132] RAX: ffff8cfc4176d820 RBX: 0000000000508c48 RCX: 0000000000000001 [95553.703805] RDX: 0000000000002000 RSI: 0000000000000000 RDI: 0000000000000000 [95553.704481] RBP: ffffd1b0c676f9c8 R08: 0000000000000000 R09: 0000000000000000 [95553.705148] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000001 [95553.705816] R13: 0000000000002000 R14: fffff8bc8257e800 R15: 0000000000000000 [95553.706483] FS: 000072ee77315840(0000) GS:ffff8cfdd2c8d000(0000) knlGS:0000000000000000 [95553.707248] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [95553.707782] CR2: 00007d8f2a9e5a20 CR3: 0000000039d0c006 CR4: 0000000000772ef0 [95553.708439] PKRU: 55555554 [95553.708734] Call Trace: [95553.709015] <TASK> [95553.709266] __getblk_slow+0xd2/0x230 [95553.709641] ? find_get_block_common+0x8b/0x530 [95553.710084] bdev_getblk+0x77/0xa0 [95553.710449] __bread_gfp+0x22/0x140 [95553.710810] fat_fill_super+0x23a/0xfc0 [95553.711216] ? __pfx_setup+0x10/0x10 [95553.711580] ? __pfx_vfat_fill_super+0x10/0x10 [95553.712014] vfat_fill_super+0x15/0x30 [95553.712401] get_tree_bdev_flags+0x141/0x1e0 [95553.712817] get_tree_bdev+0x10/0x20 [95553.713177] vfat_get_tree+0x15/0x20 [95553.713550] vfs_get_tree+0x2a/0x100 [95553.713910] vfs_cmd_create+0x62/0xf0 [95553.714273] __do_sys_fsconfig+0x4e7/0x660 [95553.714669] __x64_sys_fsconfig+0x20/0x40 [95553.715062] x64_sys_call+0x21ee/0x26a0 [95553.715453] do_syscall_64+0x80/0x670 [95553.715816] ? __fs_parse+0x65/0x1e0 [95553.716172] ? fat_parse_param+0x103/0x4b0 [95553.716587] ? vfs_parse_fs_param_source+0x21/0xa0 [95553.717034] ? __do_sys_fsconfig+0x3d9/0x660 [95553.717548] ? __x64_sys_fsconfig+0x20/0x40 [95553.717957] ? x64_sys_call+0x21ee/0x26a0 [95553.718360] ? do_syscall_64+0xb8/0x670 [95553.718734] ? __x64_sys_fsconfig+0x20/0x40 [95553.719141] ? x64_sys_call+0x21ee/0x26a0 [95553.719545] ? do_syscall_64+0xb8/0x670 [95553.719922] ? x64_sys_call+0x1405/0x26a0 [95553.720317] ? do_syscall_64+0xb8/0x670 [95553.720702] ? __x64_sys_close+0x3e/0x90 [95553.721080] ? x64_sys_call+0x1b5e/0x26a0 [95553.721478] ? do_syscall_64+0xb8/0x670 [95553.721841] ? irqentry_exit+0x43/0x50 [95553.722211] ? exc_page_fault+0x90/0x1b0 [95553.722681] entry_SYSCALL_64_after_hwframe+0x76/0x7e [95553.723166] RIP: 0033:0x72ee774f3afe [95553.723562] Code: 73 01 c3 48 8b 0d 0a 33 0f 00 f7 d8 64 89 01 48 83 c8 ff c3 0f 1f 84 00 00 00 00 00 f3 0f 1e fa 49 89 ca b8 af 01 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d da 32 0f 00 f7 d8 64 89 01 48 [95553.725188] RSP: 002b:00007ffe97148978 EFLAGS: 00000246 ORIG_RAX: 00000000000001af [95553.725892] RAX: ffffffffffffffda RBX: ---truncated---
CVE-2025-40236 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: virtio-net: zero unused hash fields When GSO tunnel is negotiated virtio_net_hdr_tnl_from_skb() tries to initialize the tunnel metadata but forget to zero unused rxhash fields. This may leak information to another side. Fixing this by zeroing the unused hash fields.
CVE-2025-40219 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: PCI/IOV: Add PCI rescan-remove locking when enabling/disabling SR-IOV Before disabling SR-IOV via config space accesses to the parent PF, sriov_disable() first removes the PCI devices representing the VFs. Since commit 9d16947b7583 ("PCI: Add global pci_lock_rescan_remove()") such removal operations are serialized against concurrent remove and rescan using the pci_rescan_remove_lock. No such locking was ever added in sriov_disable() however. In particular when commit 18f9e9d150fc ("PCI/IOV: Factor out sriov_add_vfs()") factored out the PCI device removal into sriov_del_vfs() there was still no locking around the pci_iov_remove_virtfn() calls. On s390 the lack of serialization in sriov_disable() may cause double remove and list corruption with the below (amended) trace being observed: PSW: 0704c00180000000 0000000c914e4b38 (klist_put+56) GPRS: 000003800313fb48 0000000000000000 0000000100000001 0000000000000001 00000000f9b520a8 0000000000000000 0000000000002fbd 00000000f4cc9480 0000000000000001 0000000000000000 0000000000000000 0000000180692828 00000000818e8000 000003800313fe2c 000003800313fb20 000003800313fad8 #0 [3800313fb20] device_del at c9158ad5c #1 [3800313fb88] pci_remove_bus_device at c915105ba #2 [3800313fbd0] pci_iov_remove_virtfn at c9152f198 #3 [3800313fc28] zpci_iov_remove_virtfn at c90fb67c0 #4 [3800313fc60] zpci_bus_remove_device at c90fb6104 #5 [3800313fca0] __zpci_event_availability at c90fb3dca #6 [3800313fd08] chsc_process_sei_nt0 at c918fe4a2 #7 [3800313fd60] crw_collect_info at c91905822 #8 [3800313fe10] kthread at c90feb390 #9 [3800313fe68] __ret_from_fork at c90f6aa64 #10 [3800313fe98] ret_from_fork at c9194f3f2. This is because in addition to sriov_disable() removing the VFs, the platform also generates hot-unplug events for the VFs. This being the reverse operation to the hotplug events generated by sriov_enable() and handled via pdev->no_vf_scan. And while the event processing takes pci_rescan_remove_lock and checks whether the struct pci_dev still exists, the lack of synchronization makes this checking racy. Other races may also be possible of course though given that this lack of locking persisted so long observable races seem very rare. Even on s390 the list corruption was only observed with certain devices since the platform events are only triggered by config accesses after the removal, so as long as the removal finished synchronously they would not race. Either way the locking is missing so fix this by adding it to the sriov_del_vfs() helper. Just like PCI rescan-remove, locking is also missing in sriov_add_vfs() including for the error case where pci_stop_and_remove_bus_device() is called without the PCI rescan-remove lock being held. Even in the non-error case, adding new PCI devices and buses should be serialized via the PCI rescan-remove lock. Add the necessary locking.
CVE-2025-62189 4 Linux, Logstare, Microsoft and 1 more 5 Linux, Linux Kernel, Collector and 2 more 2025-12-04 N/A
LogStare Collector contains an incorrect authorization vulnerability in UserRegistration. If exploited, a non-administrative user may create a new user account by sending a crafted HTTP request.
CVE-2022-50297 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: ath9k: verify the expected usb_endpoints are present The bug arises when a USB device claims to be an ATH9K but doesn't have the expected endpoints. (In this case there was an interrupt endpoint where the driver expected a bulk endpoint.) The kernel needs to be able to handle such devices without getting an internal error. usb 1-1: BOGUS urb xfer, pipe 3 != type 1 WARNING: CPU: 3 PID: 500 at drivers/usb/core/urb.c:493 usb_submit_urb+0xce2/0x1430 drivers/usb/core/urb.c:493 Modules linked in: CPU: 3 PID: 500 Comm: kworker/3:2 Not tainted 5.10.135-syzkaller #0 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014 Workqueue: events request_firmware_work_func RIP: 0010:usb_submit_urb+0xce2/0x1430 drivers/usb/core/urb.c:493 Call Trace: ath9k_hif_usb_alloc_rx_urbs drivers/net/wireless/ath/ath9k/hif_usb.c:908 [inline] ath9k_hif_usb_alloc_urbs+0x75e/0x1010 drivers/net/wireless/ath/ath9k/hif_usb.c:1019 ath9k_hif_usb_dev_init drivers/net/wireless/ath/ath9k/hif_usb.c:1109 [inline] ath9k_hif_usb_firmware_cb+0x142/0x530 drivers/net/wireless/ath/ath9k/hif_usb.c:1242 request_firmware_work_func+0x12e/0x240 drivers/base/firmware_loader/main.c:1097 process_one_work+0x9af/0x1600 kernel/workqueue.c:2279 worker_thread+0x61d/0x12f0 kernel/workqueue.c:2425 kthread+0x3b4/0x4a0 kernel/kthread.c:313 ret_from_fork+0x22/0x30 arch/x86/entry/entry_64.S:299 Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
CVE-2022-50298 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: slimbus: qcom-ngd: cleanup in probe error path Add proper error path in probe() to cleanup resources previously acquired/allocated to fix warnings visible during probe deferral: notifier callback qcom_slim_ngd_ssr_notify already registered WARNING: CPU: 6 PID: 70 at kernel/notifier.c:28 notifier_chain_register+0x5c/0x90 Modules linked in: CPU: 6 PID: 70 Comm: kworker/u16:1 Not tainted 6.0.0-rc3-next-20220830 #380 Call trace: notifier_chain_register+0x5c/0x90 srcu_notifier_chain_register+0x44/0x90 qcom_register_ssr_notifier+0x38/0x4c qcom_slim_ngd_ctrl_probe+0xd8/0x400 platform_probe+0x6c/0xe0 really_probe+0xbc/0x2d4 __driver_probe_device+0x78/0xe0 driver_probe_device+0x3c/0x12c __device_attach_driver+0xb8/0x120 bus_for_each_drv+0x78/0xd0 __device_attach+0xa8/0x1c0 device_initial_probe+0x18/0x24 bus_probe_device+0xa0/0xac deferred_probe_work_func+0x88/0xc0 process_one_work+0x1d4/0x320 worker_thread+0x2cc/0x44c kthread+0x110/0x114 ret_from_fork+0x10/0x20
CVE-2022-50299 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: md: Replace snprintf with scnprintf Current code produces a warning as shown below when total characters in the constituent block device names plus the slashes exceeds 200. snprintf() returns the number of characters generated from the given input, which could cause the expression “200 – len” to wrap around to a large positive number. Fix this by using scnprintf() instead, which returns the actual number of characters written into the buffer. [ 1513.267938] ------------[ cut here ]------------ [ 1513.267943] WARNING: CPU: 15 PID: 37247 at <snip>/lib/vsprintf.c:2509 vsnprintf+0x2c8/0x510 [ 1513.267944] Modules linked in: <snip> [ 1513.267969] CPU: 15 PID: 37247 Comm: mdadm Not tainted 5.4.0-1085-azure #90~18.04.1-Ubuntu [ 1513.267969] Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS Hyper-V UEFI Release v4.1 05/09/2022 [ 1513.267971] RIP: 0010:vsnprintf+0x2c8/0x510 <-snip-> [ 1513.267982] Call Trace: [ 1513.267986] snprintf+0x45/0x70 [ 1513.267990] ? disk_name+0x71/0xa0 [ 1513.267993] dump_zones+0x114/0x240 [raid0] [ 1513.267996] ? _cond_resched+0x19/0x40 [ 1513.267998] raid0_run+0x19e/0x270 [raid0] [ 1513.268000] md_run+0x5e0/0xc50 [ 1513.268003] ? security_capable+0x3f/0x60 [ 1513.268005] do_md_run+0x19/0x110 [ 1513.268006] md_ioctl+0x195e/0x1f90 [ 1513.268007] blkdev_ioctl+0x91f/0x9f0 [ 1513.268010] block_ioctl+0x3d/0x50 [ 1513.268012] do_vfs_ioctl+0xa9/0x640 [ 1513.268014] ? __fput+0x162/0x260 [ 1513.268016] ksys_ioctl+0x75/0x80 [ 1513.268017] __x64_sys_ioctl+0x1a/0x20 [ 1513.268019] do_syscall_64+0x5e/0x200 [ 1513.268021] entry_SYSCALL_64_after_hwframe+0x44/0xa9
CVE-2022-50300 1 Linux 1 Linux Kernel 2025-12-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix extent map use-after-free when handling missing device in read_one_chunk Store the error code before freeing the extent_map. Though it's reference counted structure, in that function it's the first and last allocation so this would lead to a potential use-after-free. The error can happen eg. when chunk is stored on a missing device and the degraded mount option is missing. Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=216721
CVE-2022-50301 1 Linux 1 Linux Kernel 2025-12-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: iommu/omap: Fix buffer overflow in debugfs There are two issues here: 1) The "len" variable needs to be checked before the very first write. Otherwise if omap2_iommu_dump_ctx() with "bytes" less than 32 it is a buffer overflow. 2) The snprintf() function returns the number of bytes that *would* have been copied if there were enough space. But we want to know the number of bytes which were *actually* copied so use scnprintf() instead.
CVE-2022-50302 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: lockd: set other missing fields when unlocking files vfs_lock_file() expects the struct file_lock to be fully initialised by the caller. Re-exported NFSv3 has been seen to Oops if the fl_file field is NULL.
CVE-2022-50303 1 Linux 1 Linux Kernel 2025-12-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: Fix double release compute pasid If kfd_process_device_init_vm returns failure after vm is converted to compute vm and vm->pasid set to compute pasid, KFD will not take pdd->drm_file reference. As a result, drm close file handler maybe called to release the compute pasid before KFD process destroy worker to release the same pasid and set vm->pasid to zero, this generates below WARNING backtrace and NULL pointer access. Add helper amdgpu_amdkfd_gpuvm_set_vm_pasid and call it at the last step of kfd_process_device_init_vm, to ensure vm pasid is the original pasid if acquiring vm failed or is the compute pasid with pdd->drm_file reference taken to avoid double release same pasid. amdgpu: Failed to create process VM object ida_free called for id=32770 which is not allocated. WARNING: CPU: 57 PID: 72542 at ../lib/idr.c:522 ida_free+0x96/0x140 RIP: 0010:ida_free+0x96/0x140 Call Trace: amdgpu_pasid_free_delayed+0xe1/0x2a0 [amdgpu] amdgpu_driver_postclose_kms+0x2d8/0x340 [amdgpu] drm_file_free.part.13+0x216/0x270 [drm] drm_close_helper.isra.14+0x60/0x70 [drm] drm_release+0x6e/0xf0 [drm] __fput+0xcc/0x280 ____fput+0xe/0x20 task_work_run+0x96/0xc0 do_exit+0x3d0/0xc10 BUG: kernel NULL pointer dereference, address: 0000000000000000 RIP: 0010:ida_free+0x76/0x140 Call Trace: amdgpu_pasid_free_delayed+0xe1/0x2a0 [amdgpu] amdgpu_driver_postclose_kms+0x2d8/0x340 [amdgpu] drm_file_free.part.13+0x216/0x270 [drm] drm_close_helper.isra.14+0x60/0x70 [drm] drm_release+0x6e/0xf0 [drm] __fput+0xcc/0x280 ____fput+0xe/0x20 task_work_run+0x96/0xc0 do_exit+0x3d0/0xc10
CVE-2022-50304 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mtd: core: fix possible resource leak in init_mtd() I got the error report while inject fault in init_mtd(): sysfs: cannot create duplicate filename '/devices/virtual/bdi/mtd-0' Call Trace: <TASK> dump_stack_lvl+0x67/0x83 sysfs_warn_dup+0x60/0x70 sysfs_create_dir_ns+0x109/0x120 kobject_add_internal+0xce/0x2f0 kobject_add+0x98/0x110 device_add+0x179/0xc00 device_create_groups_vargs+0xf4/0x100 device_create+0x7b/0xb0 bdi_register_va.part.13+0x58/0x2d0 bdi_register+0x9b/0xb0 init_mtd+0x62/0x171 [mtd] do_one_initcall+0x6c/0x3c0 do_init_module+0x58/0x222 load_module+0x268e/0x27d0 __do_sys_finit_module+0xd5/0x140 do_syscall_64+0x37/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd </TASK> kobject_add_internal failed for mtd-0 with -EEXIST, don't try to register things with the same name in the same directory. Error registering mtd class or bdi: -17 If init_mtdchar() fails in init_mtd(), mtd_bdi will not be unregistered, as a result, we can't load the mtd module again, to fix this by calling bdi_unregister(mtd_bdi) after out_procfs label.
CVE-2022-50305 1 Linux 1 Linux Kernel 2025-12-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: ASoC: sof_es8336: fix possible use-after-free in sof_es8336_remove() sof_es8336_remove() calls cancel_delayed_work(). However, that function does not wait until the work function finishes. This means that the callback function may still be running after the driver's remove function has finished, which would result in a use-after-free. Fix by calling cancel_delayed_work_sync(), which ensures that the work is properly cancelled, no longer running, and unable to re-schedule itself.
CVE-2022-50307 1 Linux 1 Linux Kernel 2025-12-04 7.1 High
In the Linux kernel, the following vulnerability has been resolved: s390/cio: fix out-of-bounds access on cio_ignore free The channel-subsystem-driver scans for newly available devices whenever device-IDs are removed from the cio_ignore list using a command such as: echo free >/proc/cio_ignore Since an I/O device scan might interfer with running I/Os, commit 172da89ed0ea ("s390/cio: avoid excessive path-verification requests") introduced an optimization to exclude online devices from the scan. The newly added check for online devices incorrectly assumes that an I/O-subchannel's drvdata points to a struct io_subchannel_private. For devices that are bound to a non-default I/O subchannel driver, such as the vfio_ccw driver, this results in an out-of-bounds read access during each scan. Fix this by changing the scan logic to rely on a driver-independent online indication. For this we can use struct subchannel->config.ena, which is the driver's requested subchannel-enabled state. Since I/Os can only be started on enabled subchannels, this matches the intent of the original optimization of not scanning devices where I/O might be running.
CVE-2022-50308 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ASoC: qcom: Add checks for devm_kcalloc As the devm_kcalloc may return NULL, the return value needs to be checked to avoid NULL poineter dereference.
CVE-2022-50309 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: xilinx: vipp: Fix refcount leak in xvip_graph_dma_init of_get_child_by_name() returns a node pointer with refcount incremented, we should use of_node_put() on it when not need anymore. Add missing of_node_put() to avoid refcount leak.
CVE-2022-50310 1 Linux 1 Linux Kernel 2025-12-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: ip6mr: fix UAF issue in ip6mr_sk_done() when addrconf_init_net() failed If the initialization fails in calling addrconf_init_net(), devconf_all is the pointer that has been released. Then ip6mr_sk_done() is called to release the net, accessing devconf->mc_forwarding directly causes invalid pointer access. The process is as follows: setup_net() ops_init() addrconf_init_net() all = kmemdup(...) ---> alloc "all" ... net->ipv6.devconf_all = all; __addrconf_sysctl_register() ---> failed ... kfree(all); ---> ipv6.devconf_all invalid ... ops_exit_list() ... ip6mr_sk_done() devconf = net->ipv6.devconf_all; //devconf is invalid pointer if (!devconf || !atomic_read(&devconf->mc_forwarding)) The following is the Call Trace information: BUG: KASAN: use-after-free in ip6mr_sk_done+0x112/0x3a0 Read of size 4 at addr ffff888075508e88 by task ip/14554 Call Trace: <TASK> dump_stack_lvl+0x8e/0xd1 print_report+0x155/0x454 kasan_report+0xba/0x1f0 kasan_check_range+0x35/0x1b0 ip6mr_sk_done+0x112/0x3a0 rawv6_close+0x48/0x70 inet_release+0x109/0x230 inet6_release+0x4c/0x70 sock_release+0x87/0x1b0 igmp6_net_exit+0x6b/0x170 ops_exit_list+0xb0/0x170 setup_net+0x7ac/0xbd0 copy_net_ns+0x2e6/0x6b0 create_new_namespaces+0x382/0xa50 unshare_nsproxy_namespaces+0xa6/0x1c0 ksys_unshare+0x3a4/0x7e0 __x64_sys_unshare+0x2d/0x40 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 RIP: 0033:0x7f7963322547 </TASK> Allocated by task 14554: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 __kasan_kmalloc+0xa1/0xb0 __kmalloc_node_track_caller+0x4a/0xb0 kmemdup+0x28/0x60 addrconf_init_net+0x1be/0x840 ops_init+0xa5/0x410 setup_net+0x5aa/0xbd0 copy_net_ns+0x2e6/0x6b0 create_new_namespaces+0x382/0xa50 unshare_nsproxy_namespaces+0xa6/0x1c0 ksys_unshare+0x3a4/0x7e0 __x64_sys_unshare+0x2d/0x40 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 Freed by task 14554: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 kasan_save_free_info+0x2a/0x40 ____kasan_slab_free+0x155/0x1b0 slab_free_freelist_hook+0x11b/0x220 __kmem_cache_free+0xa4/0x360 addrconf_init_net+0x623/0x840 ops_init+0xa5/0x410 setup_net+0x5aa/0xbd0 copy_net_ns+0x2e6/0x6b0 create_new_namespaces+0x382/0xa50 unshare_nsproxy_namespaces+0xa6/0x1c0 ksys_unshare+0x3a4/0x7e0 __x64_sys_unshare+0x2d/0x40 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0