| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| IBM Cloud Pak for Business Automation 25.0.0 through 25.0.0 Interim Fix 002, 24.0.1 through 24.0.1 Interim Fix 005, and 24.0.0 through 24.0.0 Interim Fix 007 could allow an authenticated user to cause a denial of service or corrupt existing data due to the improper validation of input length. |
| Stored Cross-Site Scripting (XSS) vulnerability type in Apidog in the version 2.7.15, where SVG image uploads are not properly sanitized. This allows attackers to embed malicious scripts in SVG files by sending a POST request to '/api/v1/user-avatar', which are then stored on the server and executed in the context of any user accessing the compromised resource. |
| HCL AION is affected by an Autocomplete HTML Attribute Not Disabled for Password Field vulnerability. This can allow autocomplete on password fields may lead to unintended storage or disclosure of sensitive credentials, potentially increasing the risk of unauthorized access. This issue affects AION: 2.0. |
| HCL AION is affected by a Cookie with Insecure, Improper, or Missing SameSite vulnerability. This can allow cookies to be sent in cross-site requests, potentially increasing exposure to cross-site request forgery and related security risks. This issue affects AION: 2.0. |
| HCL AION is affected by a Permanent Cookie Containing Sensitive Session Information vulnerability. It is storing sensitive session data in persistent cookies may increase the risk of unauthorized access if the cookies are intercepted or compromised. This issue affects AION: 2.0. |
| Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') vulnerability in Martcode Software Inc. Delta Course Automation allows SQL Injection.This issue affects Delta Course Automation: through 04022026.
NOTE: The vendor was contacted early about this disclosure but did not respond in any way. |
| Heap-based Buffer Overflow vulnerability in TP-Link Archer AX53 v1.0 (tmpserver modules) allows authenticated adjacent attackers to cause a segmentation fault or potentially execute arbitrary code
via a specially crafted set of network packets containing an excessive number of host entries
This issue affects Archer AX53 v1.0: through 1.3.1 Build 20241120. |
| Heap-based Buffer Overflow vulnerability in TP-Link Archer AX53 v1.0 (tmpserver modules) allows authenticated adjacent attackers to cause a segmentation fault or potentially execute arbitrary code. The vulnerability arises from improper validation of a packet field whose offset is used to determine the write location in memory. By crafting a packet with a manipulated field offset, an attacker can redirect writes to arbitrary memory locations.This issue affects Archer AX53 v1.0: through 1.3.1 Build 20241120. |
| Heap-based Buffer Overflow vulnerability in TP-Link Archer AX53 v1.0 (tmpserver modules) allows authenticated adjacent attackers to cause a segmentation fault or potentially execute arbitrary code via a specially crafted network packet containing an excessive number of fields with zero‑length values.This issue affects Archer AX53 v1.0: through 1.3.1 Build 20241120. |
| Heap-based Buffer Overflow vulnerability in TP-Link Archer AX53 v1.0 (tmpserver modules) allows authenticated adjacent attackers to cause a segmentation fault or potentially execute arbitrary code via a specially crafted network packet containing a field whose length exceeds the maximum expected value.This issue affects Archer AX53 v1.0: through 1.3.1 Build 20241120. |
| SSH Hostkey misconfiguration vulnerability in TP-Link Archer AX53 v1.0 (tmpserver modules) allows attackers to obtain device credentials through a specially crafted man‑in‑the‑middle (MITM) attack. This could enable unauthorized access if captured credentials are reused.This issue affects Archer AX53 v1.0: through 1.3.1 Build 20241120. |
| Fast DDS is a C++ implementation of the DDS (Data Distribution Service) standard of the OMG (Object Management Group
). Prior to versions 3.4.1, 3.3.1, and 2.6.11, when the security mode is enabled, modifying the DATA Submessage within an
SPDP packet sent by a publisher causes an Out-Of-Memory (OOM) condition, resulting in remote termination of Fast-DDS. If t
he fields of PID_IDENTITY_TOKEN or PID_PERMISSION_TOKEN in the DATA Submessage — specifically by tampering with the length
field in readBinaryPropertySeq — are modified, an integer overflow occurs, leading to an OOM during the resize operation.
Versions 3.4.1, 3.3.1, and 2.6.11 patch the issue. |
| Fast DDS is a C++ implementation of the DDS (Data Distribution Service) standard of the OMG (Object Management Group
). Prior to versions 3.4.1, 3.3.1, and 2.6.11, when the security mode is enabled, modifying the DATA Submessage within an
SPDP packet sent by a publisher causes a heap buffer overflow, resulting in remote termination of Fast-DDS. If the fields
of `PID_IDENTITY_TOKEN` or `PID_PERMISSIONS_TOKEN` in the DATA Submessage — specifically by tampering with the `str_size`
value read by `readString` (called from `readBinaryProperty`) — are modified, a 32-bit integer overflow can occur, causing
`std::vector::resize` to use an attacker-controlled size and quickly trigger heap buffer overflow and remote process term
ination. Versions 3.4.1, 3.3.1, and 2.6.11 patch the issue. |
| Fast DDS is a C++ implementation of the DDS (Data Distribution Service) standard of the OMG (Object Management Group
). Prior to versions 3.4.1, 3.3.1, and 2.6.11, when the security mode is enabled, modifying the DATA Submessage within an
SPDP packet sent by a publisher causes a heap buffer overflow, resulting in remote termination of Fast-DDS. If the fields
of `PID_IDENTITY_TOKEN` or `PID_PERMISSIONS_TOKEN` in the DATA Submessage are tampered with — specially `readOctetVector`
reads an unchecked `vecsize` that is propagated unchanged into `readData` as the `length` parameter — the attacker-contro
lled `vecsize` can trigger a 32-bit integer overflow during the `length` calculation. That overflow can cause large alloca
tion attempt that quickly leads to OOM, enabling a remotely-triggerable denial-of-service and remote process termination.
Versions 3.4.1, 3.3.1, and 2.6.11 patch the issue. |
| Fast DDS is a C++ implementation of the DDS (Data Distribution Service) standard of the OMG (Object Management Group
). ParticipantGenericMessage is the DDS Security control-message container that carries not only the handshake but also on
going security-control traffic after the handshake, such as crypto-token exchange, rekeying, re-authentication, and token
delivery for newly appearing endpoints. On receive, the CDR parser is invoked first and deserializes the `message_data` (i
.e., the `DataHolderSeq`) via the `readParticipantGenericMessage → readDataHolderSeq` path. The `DataHolderSeq` is parsed
sequentially: a sequence count (`uint32`), and for each DataHolder the `class_id` string (e.g. `DDS:Auth:PKI-DH:1.0+Req`),
string properties (a sequence of key/value pairs), and binary properties (a name plus an octet-vector). The parser operat
es at a stateless level and does not know higher-layer state (for example, whether the handshake has already completed), s
o it fully unfolds the structure before distinguishing legitimate from malformed traffic. Because RTPS permits duplicates,
delays, and retransmissions, a receiver must perform at least minimal structural parsing to check identity and sequence n
umbers before discarding or processing a message; the current implementation, however, does not "peek" only at a minimal
header and instead parses the entire `DataHolderSeq`. As a result, prior to versions 3.4.1, 3.3.1, and 2.6.11, this parsi
ng behavior can trigger an out-of-memory condition and remotely terminate the process. Versions 3.4.1, 3.3.1, and 2.6.11 p
atch the issue. |
| Heap-based Buffer Overflow vulnerability in TP-Link Archer AX53 v1.0 (tdpserver modules) allows adjacent attackers to cause a segmentation fault or potentially execute arbitrary code via a specially crafted network packet containing a maliciously formed field.This issue affects Archer AX53 v1.0: through 1.3.1 Build 20241120. |
| Fast DDS is a C++ implementation of the DDS (Data Distribution Service) standard of the OMG (Object Management Group
). Prior to versions 3.4.1, 3.3.1, and 2.6.11, when the security mode is enabled, modifying the DATA Submessage within an
SPDP packet sent by a publisher causes an Out-Of-Memory (OOM) condition, resulting in remote termination of Fast-DDS. If t
he fields of `PID_IDENTITY_TOKEN` or `PID_PERMISSIONS_TOKEN` in the DATA Submessage are tampered with — specifically by ta
mpering with the the `vecsize` value read by `readOctetVector` — a 32-bit integer overflow can occur, causing `std::vector
::resize` to request an attacker-controlled size and quickly trigger OOM and remote process termination. Versions 3.4.1, 3
.3.1, and 2.6.11 patch the issue. |
| Fast DDS is a C++ implementation of the DDS (Data Distribution Service) standard of the OMG (Object Management Group
). Prior to versions 3.4.1, 3.3.1, and 2.6.11, a remotely triggerable Out-of-Memory (OOM) denial-of-service exists in Fast
-DDS when processing RTPS GAP submessages under RELIABLE QoS. By sending a tiny GAP packet with a huge gap range (`gapList
.base - gapStart`), an attacker drives `StatefulReader::processGapMsg()` into an unbounded loop that inserts millions of s
equence numbers into `WriterProxy::changes_received_` (`std::set`), causing multi-GB heap growth and process termination.
No authentication is required beyond network reachability to the reader on the DDS domain. In environments without an RSS
limit (non-ASan / unlimited), memory consumption was observed to rise to ~64 GB. Versions 3.4.1, 3.3.1, and 2.6.11 patch t
he issue. |
| A relative path traversal vulnerability has been identified in the Embedded Solutions Framework in various Lexmark devices. This vulnerability can be leveraged by an attacker to execute arbitrary code as an unprivileged user. |
| An untrusted search path vulnerability has been identified in the Embedded Solutions Framework in various Lexmark devices. This vulnerability can be leveraged by an attacker to execute arbitrary code. |