| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/pseries: Enforce hcall result buffer validity and size
plpar_hcall(), plpar_hcall9(), and related functions expect callers to
provide valid result buffers of certain minimum size. Currently this
is communicated only through comments in the code and the compiler has
no idea.
For example, if I write a bug like this:
long retbuf[PLPAR_HCALL_BUFSIZE]; // should be PLPAR_HCALL9_BUFSIZE
plpar_hcall9(H_ALLOCATE_VAS_WINDOW, retbuf, ...);
This compiles with no diagnostics emitted, but likely results in stack
corruption at runtime when plpar_hcall9() stores results past the end
of the array. (To be clear this is a contrived example and I have not
found a real instance yet.)
To make this class of error less likely, we can use explicitly-sized
array parameters instead of pointers in the declarations for the hcall
APIs. When compiled with -Warray-bounds[1], the code above now
provokes a diagnostic like this:
error: array argument is too small;
is of size 32, callee requires at least 72 [-Werror,-Warray-bounds]
60 | plpar_hcall9(H_ALLOCATE_VAS_WINDOW, retbuf,
| ^ ~~~~~~
[1] Enabled for LLVM builds but not GCC for now. See commit
0da6e5fd6c37 ("gcc: disable '-Warray-bounds' for gcc-13 too") and
related changes. |
| In the Linux kernel, the following vulnerability has been resolved:
vmci: prevent speculation leaks by sanitizing event in event_deliver()
Coverity spotted that event_msg is controlled by user-space,
event_msg->event_data.event is passed to event_deliver() and used
as an index without sanitization.
This change ensures that the event index is sanitized to mitigate any
possibility of speculative information leaks.
This bug was discovered and resolved using Coverity Static Analysis
Security Testing (SAST) by Synopsys, Inc.
Only compile tested, no access to HW. |
| In the Linux kernel, the following vulnerability has been resolved:
xfs: fix log recovery buffer allocation for the legacy h_size fixup
Commit a70f9fe52daa ("xfs: detect and handle invalid iclog size set by
mkfs") added a fixup for incorrect h_size values used for the initial
umount record in old xfsprogs versions. Later commit 0c771b99d6c9
("xfs: clean up calculation of LR header blocks") cleaned up the log
reover buffer calculation, but stoped using the fixed up h_size value
to size the log recovery buffer, which can lead to an out of bounds
access when the incorrect h_size does not come from the old mkfs
tool, but a fuzzer.
Fix this by open coding xlog_logrec_hblks and taking the fixed h_size
into account for this calculation. |
| A vulnerbility was found in OpenSC. This security flaw cause a buffer overrun vulnerability in pkcs15 cardos_have_verifyrc_package. The attacker can supply a smart card package with malformed ASN1 context. The cardos_have_verifyrc_package function scans the ASN1 buffer for 2 tags, where remaining length is wrongly caculated due to moved starting pointer. This leads to possible heap-based buffer oob read. In cases where ASAN is enabled while compiling this causes a crash. Further info leak or more damage is possible. |
| A vulnerability was found in PHP where setting the environment variable PHP_CLI_SERVER_WORKERS to a large value leads to a heap buffer overflow. |
| A flaw was found in the bash package, where a heap-buffer overflow can occur in valid parameter_transform. This issue may lead to memory problems. |
| A vulnerability was found in Exim and classified as problematic. This issue affects some unknown processing of the component Regex Handler. The manipulation leads to use after free. The name of the patch is 4e9ed49f8f12eb331b29bd5b6dc3693c520fddc2. It is recommended to apply a patch to fix this issue. The identifier VDB-211073 was assigned to this vulnerability. |
| Stack buffer overflow issues were found in Opensc before version 0.22.0 in various places that could potentially crash programs using the library. |
| Heap buffer overflow issues were found in Opensc before version 0.22.0 in pkcs15-oberthur.c that could potentially crash programs using the library. |
| The CIL compiler in SELinux 3.2 has a heap-based buffer over-read in ebitmap_match_any (called indirectly from cil_check_neverallow). This occurs because there is sometimes a lack of checks for invalid statements in an optional block. |
| The SingleDocParser::HandleFlowMap function in yaml-cpp (aka LibYaml-C++) 0.6.2 allows remote attackers to cause a denial of service (stack consumption and application crash) via a crafted YAML file. |
| The Scanner::EnsureTokensInQueue function in yaml-cpp (aka LibYaml-C++) 0.6.2 allows remote attackers to cause a denial of service (stack consumption and application crash) via a crafted YAML file. |
| Stack-based buffer overflow in DMitry (Deepmagic Information Gathering Tool) version 1.3a (Unix) allows attackers to cause a denial of service (application crash) or possibly have unspecified other impact via a long argument. An example threat model is automated execution of DMitry with hostname strings found in local log files. |
| The SingleDocParser::HandleNode function in yaml-cpp (aka LibYaml-C++) 0.5.3 allows remote attackers to cause a denial of service (stack consumption and application crash) via a crafted YAML file. |
| The issue was addressed with improved memory handling. This issue is fixed in visionOS 2.4, tvOS 18.4, iPadOS 17.7.6, iOS 18.4 and iPadOS 18.4, macOS Sequoia 15.4, Safari 18.4. Processing maliciously crafted web content may lead to an unexpected Safari crash. |
| This issue was addressed through improved state management. This issue is fixed in visionOS 2.3, Safari 18.3, iOS 18.3 and iPadOS 18.3, macOS Sequoia 15.3, watchOS 11.3, tvOS 18.3. Processing maliciously crafted web content may lead to an unexpected process crash. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: hid-thrustmaster: fix stack-out-of-bounds read in usb_check_int_endpoints()
Syzbot[1] has detected a stack-out-of-bounds read of the ep_addr array from
hid-thrustmaster driver. This array is passed to usb_check_int_endpoints
function from usb.c core driver, which executes a for loop that iterates
over the elements of the passed array. Not finding a null element at the end of
the array, it tries to read the next, non-existent element, crashing the kernel.
To fix this, a 0 element was added at the end of the array to break the for
loop.
[1] https://syzkaller.appspot.com/bug?extid=9c9179ac46169c56c1ad |
| A bug in WebAssembly code generation could have lead to a crash. It may have been possible for an attacker to leverage this to achieve code execution. This vulnerability affects Firefox < 135, Firefox ESR < 128.7, Thunderbird < 128.7, and Thunderbird < 135. |
| In the Linux kernel, the following vulnerability has been resolved:
mac802154: check local interfaces before deleting sdata list
syzkaller reported a corrupted list in ieee802154_if_remove. [1]
Remove an IEEE 802.15.4 network interface after unregister an IEEE 802.15.4
hardware device from the system.
CPU0 CPU1
==== ====
genl_family_rcv_msg_doit ieee802154_unregister_hw
ieee802154_del_iface ieee802154_remove_interfaces
rdev_del_virtual_intf_deprecated list_del(&sdata->list)
ieee802154_if_remove
list_del_rcu
The net device has been unregistered, since the rcu grace period,
unregistration must be run before ieee802154_if_remove.
To avoid this issue, add a check for local->interfaces before deleting
sdata list.
[1]
kernel BUG at lib/list_debug.c:58!
Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI
CPU: 0 UID: 0 PID: 6277 Comm: syz-executor157 Not tainted 6.12.0-rc6-syzkaller-00005-g557329bcecc2 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
RIP: 0010:__list_del_entry_valid_or_report+0xf4/0x140 lib/list_debug.c:56
Code: e8 a1 7e 00 07 90 0f 0b 48 c7 c7 e0 37 60 8c 4c 89 fe e8 8f 7e 00 07 90 0f 0b 48 c7 c7 40 38 60 8c 4c 89 fe e8 7d 7e 00 07 90 <0f> 0b 48 c7 c7 a0 38 60 8c 4c 89 fe e8 6b 7e 00 07 90 0f 0b 48 c7
RSP: 0018:ffffc9000490f3d0 EFLAGS: 00010246
RAX: 000000000000004e RBX: dead000000000122 RCX: d211eee56bb28d00
RDX: 0000000000000000 RSI: 0000000080000000 RDI: 0000000000000000
RBP: ffff88805b278dd8 R08: ffffffff8174a12c R09: 1ffffffff2852f0d
R10: dffffc0000000000 R11: fffffbfff2852f0e R12: dffffc0000000000
R13: dffffc0000000000 R14: dead000000000100 R15: ffff88805b278cc0
FS: 0000555572f94380(0000) GS:ffff8880b8600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000056262e4a3000 CR3: 0000000078496000 CR4: 00000000003526f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
__list_del_entry_valid include/linux/list.h:124 [inline]
__list_del_entry include/linux/list.h:215 [inline]
list_del_rcu include/linux/rculist.h:157 [inline]
ieee802154_if_remove+0x86/0x1e0 net/mac802154/iface.c:687
rdev_del_virtual_intf_deprecated net/ieee802154/rdev-ops.h:24 [inline]
ieee802154_del_iface+0x2c0/0x5c0 net/ieee802154/nl-phy.c:323
genl_family_rcv_msg_doit net/netlink/genetlink.c:1115 [inline]
genl_family_rcv_msg net/netlink/genetlink.c:1195 [inline]
genl_rcv_msg+0xb14/0xec0 net/netlink/genetlink.c:1210
netlink_rcv_skb+0x1e3/0x430 net/netlink/af_netlink.c:2551
genl_rcv+0x28/0x40 net/netlink/genetlink.c:1219
netlink_unicast_kernel net/netlink/af_netlink.c:1331 [inline]
netlink_unicast+0x7f6/0x990 net/netlink/af_netlink.c:1357
netlink_sendmsg+0x8e4/0xcb0 net/netlink/af_netlink.c:1901
sock_sendmsg_nosec net/socket.c:729 [inline]
__sock_sendmsg+0x221/0x270 net/socket.c:744
____sys_sendmsg+0x52a/0x7e0 net/socket.c:2607
___sys_sendmsg net/socket.c:2661 [inline]
__sys_sendmsg+0x292/0x380 net/socket.c:2690
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f |
| In the Linux kernel, the following vulnerability has been resolved:
x86/xen: don't do PV iret hypercall through hypercall page
Instead of jumping to the Xen hypercall page for doing the iret
hypercall, directly code the required sequence in xen-asm.S.
This is done in preparation of no longer using hypercall page at all,
as it has shown to cause problems with speculation mitigations.
This is part of XSA-466 / CVE-2024-53241. |