| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| FreshRSS is a free, self-hostable RSS aggregator. In versions 1.16.0 and above through 1.26.3, an unprivileged attacker can create a new admin user when registration is enabled through the use of a hidden field used only in the user management admin page, new_user_is_admin. This is fixed in version 1.27.0. |
| In the Linux kernel, the following vulnerability has been resolved:
openrisc: traps: Don't send signals to kernel mode threads
OpenRISC exception handling sends signals to user processes on floating
point exceptions and trap instructions (for debugging) among others.
There is a bug where the trap handling logic may send signals to kernel
threads, we should not send these signals to kernel threads, if that
happens we treat it as an error.
This patch adds conditions to die if the kernel receives these
exceptions in kernel mode code. |
| In the Linux kernel, the following vulnerability has been resolved:
macintosh/via-macii: Fix "BUG: sleeping function called from invalid context"
The via-macii ADB driver calls request_irq() after disabling hard
interrupts. But disabling interrupts isn't necessary here because the
VIA shift register interrupt was masked during VIA1 initialization. |
| In the Linux kernel, the following vulnerability has been resolved:
block: refine the EOF check in blkdev_iomap_begin
blkdev_iomap_begin rounds down the offset to the logical block size
before stashing it in iomap->offset and checking that it still is
inside the inode size.
Check the i_size check to the raw pos value so that we don't try a
zero size write if iter->pos is unaligned. |
| In the Linux kernel, the following vulnerability has been resolved:
blk-cgroup: fix list corruption from resetting io stat
Since commit 3b8cc6298724 ("blk-cgroup: Optimize blkcg_rstat_flush()"),
each iostat instance is added to blkcg percpu list, so blkcg_reset_stats()
can't reset the stat instance by memset(), otherwise the llist may be
corrupted.
Fix the issue by only resetting the counter part. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe: Only use reserved BCS instances for usm migrate exec queue
The GuC context scheduling queue is 2 entires deep, thus it is possible
for a migration job to be stuck behind a fault if migration exec queue
shares engines with user jobs. This can deadlock as the migrate exec
queue is required to service page faults. Avoid deadlock by only using
reserved BCS instances for usm migrate exec queue.
(cherry picked from commit 04f4a70a183a688a60fe3882d6e4236ea02cfc67) |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: multidev: fix to recognize valid zero block address
As reported by Yi Zhang in mailing list [1], kernel warning was catched
during zbd/010 test as below:
./check zbd/010
zbd/010 (test gap zone support with F2FS) [failed]
runtime ... 3.752s
something found in dmesg:
[ 4378.146781] run blktests zbd/010 at 2024-02-18 11:31:13
[ 4378.192349] null_blk: module loaded
[ 4378.209860] null_blk: disk nullb0 created
[ 4378.413285] scsi_debug:sdebug_driver_probe: scsi_debug: trim
poll_queues to 0. poll_q/nr_hw = (0/1)
[ 4378.422334] scsi host15: scsi_debug: version 0191 [20210520]
dev_size_mb=1024, opts=0x0, submit_queues=1, statistics=0
[ 4378.434922] scsi 15:0:0:0: Direct-Access-ZBC Linux
scsi_debug 0191 PQ: 0 ANSI: 7
[ 4378.443343] scsi 15:0:0:0: Power-on or device reset occurred
[ 4378.449371] sd 15:0:0:0: Attached scsi generic sg5 type 20
[ 4378.449418] sd 15:0:0:0: [sdf] Host-managed zoned block device
...
(See '/mnt/tests/gitlab.com/api/v4/projects/19168116/repository/archive.zip/storage/blktests/blk/blktests/results/nodev/zbd/010.dmesg'
WARNING: CPU: 22 PID: 44011 at fs/iomap/iter.c:51
CPU: 22 PID: 44011 Comm: fio Not tainted 6.8.0-rc3+ #1
RIP: 0010:iomap_iter+0x32b/0x350
Call Trace:
<TASK>
__iomap_dio_rw+0x1df/0x830
f2fs_file_read_iter+0x156/0x3d0 [f2fs]
aio_read+0x138/0x210
io_submit_one+0x188/0x8c0
__x64_sys_io_submit+0x8c/0x1a0
do_syscall_64+0x86/0x170
entry_SYSCALL_64_after_hwframe+0x6e/0x76
Shinichiro Kawasaki helps to analyse this issue and proposes a potential
fixing patch in [2].
Quoted from reply of Shinichiro Kawasaki:
"I confirmed that the trigger commit is dbf8e63f48af as Yi reported. I took a
look in the commit, but it looks fine to me. So I thought the cause is not
in the commit diff.
I found the WARN is printed when the f2fs is set up with multiple devices,
and read requests are mapped to the very first block of the second device in the
direct read path. In this case, f2fs_map_blocks() and f2fs_map_blocks_cached()
modify map->m_pblk as the physical block address from each block device. It
becomes zero when it is mapped to the first block of the device. However,
f2fs_iomap_begin() assumes that map->m_pblk is the physical block address of the
whole f2fs, across the all block devices. It compares map->m_pblk against
NULL_ADDR == 0, then go into the unexpected branch and sets the invalid
iomap->length. The WARN catches the invalid iomap->length.
This WARN is printed even for non-zoned block devices, by following steps.
- Create two (non-zoned) null_blk devices memory backed with 128MB size each:
nullb0 and nullb1.
# mkfs.f2fs /dev/nullb0 -c /dev/nullb1
# mount -t f2fs /dev/nullb0 "${mount_dir}"
# dd if=/dev/zero of="${mount_dir}/test.dat" bs=1M count=192
# dd if="${mount_dir}/test.dat" of=/dev/null bs=1M count=192 iflag=direct
..."
So, the root cause of this issue is: when multi-devices feature is on,
f2fs_map_blocks() may return zero blkaddr in non-primary device, which is
a verified valid block address, however, f2fs_iomap_begin() treats it as
an invalid block address, and then it triggers the warning in iomap
framework code.
Finally, as discussed, we decide to use a more simple and direct way that
checking (map.m_flags & F2FS_MAP_MAPPED) condition instead of
(map.m_pblk != NULL_ADDR) to fix this issue.
Thanks a lot for the effort of Yi Zhang and Shinichiro Kawasaki on this
issue.
[1] https://lore.kernel.org/linux-f2fs-devel/CAHj4cs-kfojYC9i0G73PRkYzcxCTex=-vugRFeP40g_URGvnfQ@mail.gmail.com/
[2] https://lore.kernel.org/linux-f2fs-devel/gngdj77k4picagsfdtiaa7gpgnup6fsgwzsltx6milmhegmjff@iax2n4wvrqye/ |
| In the Linux kernel, the following vulnerability has been resolved:
fuse: clear FR_SENT when re-adding requests into pending list
The following warning was reported by lee bruce:
------------[ cut here ]------------
WARNING: CPU: 0 PID: 8264 at fs/fuse/dev.c:300
fuse_request_end+0x685/0x7e0 fs/fuse/dev.c:300
Modules linked in:
CPU: 0 PID: 8264 Comm: ab2 Not tainted 6.9.0-rc7
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
RIP: 0010:fuse_request_end+0x685/0x7e0 fs/fuse/dev.c:300
......
Call Trace:
<TASK>
fuse_dev_do_read.constprop.0+0xd36/0x1dd0 fs/fuse/dev.c:1334
fuse_dev_read+0x166/0x200 fs/fuse/dev.c:1367
call_read_iter include/linux/fs.h:2104 [inline]
new_sync_read fs/read_write.c:395 [inline]
vfs_read+0x85b/0xba0 fs/read_write.c:476
ksys_read+0x12f/0x260 fs/read_write.c:619
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xce/0x260 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
......
</TASK>
The warning is due to the FUSE_NOTIFY_RESEND notify sent by the write()
syscall in the reproducer program and it happens as follows:
(1) calls fuse_dev_read() to read the INIT request
The read succeeds. During the read, bit FR_SENT will be set on the
request.
(2) calls fuse_dev_write() to send an USE_NOTIFY_RESEND notify
The resend notify will resend all processing requests, so the INIT
request is moved from processing list to pending list again.
(3) calls fuse_dev_read() with an invalid output address
fuse_dev_read() will try to copy the same INIT request to the output
address, but it will fail due to the invalid address, so the INIT
request is ended and triggers the warning in fuse_request_end().
Fix it by clearing FR_SENT when re-adding requests into pending list. |
| In the Linux kernel, the following vulnerability has been resolved:
vmxnet3: disable rx data ring on dma allocation failure
When vmxnet3_rq_create() fails to allocate memory for rq->data_ring.base,
the subsequent call to vmxnet3_rq_destroy_all_rxdataring does not reset
rq->data_ring.desc_size for the data ring that failed, which presumably
causes the hypervisor to reference it on packet reception.
To fix this bug, rq->data_ring.desc_size needs to be set to 0 to tell
the hypervisor to disable this feature.
[ 95.436876] kernel BUG at net/core/skbuff.c:207!
[ 95.439074] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
[ 95.440411] CPU: 7 PID: 0 Comm: swapper/7 Not tainted 6.9.3-dirty #1
[ 95.441558] Hardware name: VMware, Inc. VMware Virtual
Platform/440BX Desktop Reference Platform, BIOS 6.00 12/12/2018
[ 95.443481] RIP: 0010:skb_panic+0x4d/0x4f
[ 95.444404] Code: 4f 70 50 8b 87 c0 00 00 00 50 8b 87 bc 00 00 00 50
ff b7 d0 00 00 00 4c 8b 8f c8 00 00 00 48 c7 c7 68 e8 be 9f e8 63 58 f9
ff <0f> 0b 48 8b 14 24 48 c7 c1 d0 73 65 9f e8 a1 ff ff ff 48 8b 14 24
[ 95.447684] RSP: 0018:ffffa13340274dd0 EFLAGS: 00010246
[ 95.448762] RAX: 0000000000000089 RBX: ffff8fbbc72b02d0 RCX: 000000000000083f
[ 95.450148] RDX: 0000000000000000 RSI: 00000000000000f6 RDI: 000000000000083f
[ 95.451520] RBP: 000000000000002d R08: 0000000000000000 R09: ffffa13340274c60
[ 95.452886] R10: ffffffffa04ed468 R11: 0000000000000002 R12: 0000000000000000
[ 95.454293] R13: ffff8fbbdab3c2d0 R14: ffff8fbbdbd829e0 R15: ffff8fbbdbd809e0
[ 95.455682] FS: 0000000000000000(0000) GS:ffff8fbeefd80000(0000) knlGS:0000000000000000
[ 95.457178] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 95.458340] CR2: 00007fd0d1f650c8 CR3: 0000000115f28000 CR4: 00000000000406f0
[ 95.459791] Call Trace:
[ 95.460515] <IRQ>
[ 95.461180] ? __die_body.cold+0x19/0x27
[ 95.462150] ? die+0x2e/0x50
[ 95.462976] ? do_trap+0xca/0x110
[ 95.463973] ? do_error_trap+0x6a/0x90
[ 95.464966] ? skb_panic+0x4d/0x4f
[ 95.465901] ? exc_invalid_op+0x50/0x70
[ 95.466849] ? skb_panic+0x4d/0x4f
[ 95.467718] ? asm_exc_invalid_op+0x1a/0x20
[ 95.468758] ? skb_panic+0x4d/0x4f
[ 95.469655] skb_put.cold+0x10/0x10
[ 95.470573] vmxnet3_rq_rx_complete+0x862/0x11e0 [vmxnet3]
[ 95.471853] vmxnet3_poll_rx_only+0x36/0xb0 [vmxnet3]
[ 95.473185] __napi_poll+0x2b/0x160
[ 95.474145] net_rx_action+0x2c6/0x3b0
[ 95.475115] handle_softirqs+0xe7/0x2a0
[ 95.476122] __irq_exit_rcu+0x97/0xb0
[ 95.477109] common_interrupt+0x85/0xa0
[ 95.478102] </IRQ>
[ 95.478846] <TASK>
[ 95.479603] asm_common_interrupt+0x26/0x40
[ 95.480657] RIP: 0010:pv_native_safe_halt+0xf/0x20
[ 95.481801] Code: 22 d7 e9 54 87 01 00 0f 1f 40 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa eb 07 0f 00 2d 93 ba 3b 00 fb f4 <e9> 2c 87 01 00 66 66 2e 0f 1f 84 00 00 00 00 00 90 90 90 90 90 90
[ 95.485563] RSP: 0018:ffffa133400ffe58 EFLAGS: 00000246
[ 95.486882] RAX: 0000000000004000 RBX: ffff8fbbc1d14064 RCX: 0000000000000000
[ 95.488477] RDX: ffff8fbeefd80000 RSI: ffff8fbbc1d14000 RDI: 0000000000000001
[ 95.490067] RBP: ffff8fbbc1d14064 R08: ffffffffa0652260 R09: 00000000000010d3
[ 95.491683] R10: 0000000000000018 R11: ffff8fbeefdb4764 R12: ffffffffa0652260
[ 95.493389] R13: ffffffffa06522e0 R14: 0000000000000001 R15: 0000000000000000
[ 95.495035] acpi_safe_halt+0x14/0x20
[ 95.496127] acpi_idle_do_entry+0x2f/0x50
[ 95.497221] acpi_idle_enter+0x7f/0xd0
[ 95.498272] cpuidle_enter_state+0x81/0x420
[ 95.499375] cpuidle_enter+0x2d/0x40
[ 95.500400] do_idle+0x1e5/0x240
[ 95.501385] cpu_startup_entry+0x29/0x30
[ 95.502422] start_secondary+0x11c/0x140
[ 95.503454] common_startup_64+0x13e/0x141
[ 95.504466] </TASK>
[ 95.505197] Modules linked in: nft_fib_inet nft_fib_ipv4
nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6
nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ip
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
memblock: make memblock_set_node() also warn about use of MAX_NUMNODES
On an (old) x86 system with SRAT just covering space above 4Gb:
ACPI: SRAT: Node 0 PXM 0 [mem 0x100000000-0xfffffffff] hotplug
the commit referenced below leads to this NUMA configuration no longer
being refused by a CONFIG_NUMA=y kernel (previously
NUMA: nodes only cover 6144MB of your 8185MB e820 RAM. Not used.
No NUMA configuration found
Faking a node at [mem 0x0000000000000000-0x000000027fffffff]
was seen in the log directly after the message quoted above), because of
memblock_validate_numa_coverage() checking for NUMA_NO_NODE (only). This
in turn led to memblock_alloc_range_nid()'s warning about MAX_NUMNODES
triggering, followed by a NULL deref in memmap_init() when trying to
access node 64's (NODE_SHIFT=6) node data.
To compensate said change, make memblock_set_node() warn on and adjust
a passed in value of MAX_NUMNODES, just like various other functions
already do. |
| In the Linux kernel, the following vulnerability has been resolved:
net: dsa: seville: register the mdiobus under devres
As explained in commits:
74b6d7d13307 ("net: dsa: realtek: register the MDIO bus under devres")
5135e96a3dd2 ("net: dsa: don't allocate the slave_mii_bus using devres")
mdiobus_free() will panic when called from devm_mdiobus_free() <-
devres_release_all() <- __device_release_driver(), and that mdiobus was
not previously unregistered.
The Seville VSC9959 switch is a platform device, so the initial set of
constraints that I thought would cause this (I2C or SPI buses which call
->remove on ->shutdown) do not apply. But there is one more which
applies here.
If the DSA master itself is on a bus that calls ->remove from ->shutdown
(like dpaa2-eth, which is on the fsl-mc bus), there is a device link
between the switch and the DSA master, and device_links_unbind_consumers()
will unbind the seville switch driver on shutdown.
So the same treatment must be applied to all DSA switch drivers, which
is: either use devres for both the mdiobus allocation and registration,
or don't use devres at all.
The seville driver has a code structure that could accommodate both the
mdiobus_unregister and mdiobus_free calls, but it has an external
dependency upon mscc_miim_setup() from mdio-mscc-miim.c, which calls
devm_mdiobus_alloc_size() on its behalf. So rather than restructuring
that, and exporting yet one more symbol mscc_miim_teardown(), let's work
with devres and replace of_mdiobus_register with the devres variant.
When we use all-devres, we can ensure that devres doesn't free a
still-registered bus (it either runs both callbacks, or none). |
| In the Linux kernel, the following vulnerability has been resolved:
net: dsa: felix: don't use devres for mdiobus
As explained in commits:
74b6d7d13307 ("net: dsa: realtek: register the MDIO bus under devres")
5135e96a3dd2 ("net: dsa: don't allocate the slave_mii_bus using devres")
mdiobus_free() will panic when called from devm_mdiobus_free() <-
devres_release_all() <- __device_release_driver(), and that mdiobus was
not previously unregistered.
The Felix VSC9959 switch is a PCI device, so the initial set of
constraints that I thought would cause this (I2C or SPI buses which call
->remove on ->shutdown) do not apply. But there is one more which
applies here.
If the DSA master itself is on a bus that calls ->remove from ->shutdown
(like dpaa2-eth, which is on the fsl-mc bus), there is a device link
between the switch and the DSA master, and device_links_unbind_consumers()
will unbind the felix switch driver on shutdown.
So the same treatment must be applied to all DSA switch drivers, which
is: either use devres for both the mdiobus allocation and registration,
or don't use devres at all.
The felix driver has the code structure in place for orderly mdiobus
removal, so just replace devm_mdiobus_alloc_size() with the non-devres
variant, and add manual free where necessary, to ensure that we don't
let devres free a still-registered bus. |
| In the Linux kernel, the following vulnerability has been resolved:
net: dsa: lantiq_gswip: don't use devres for mdiobus
As explained in commits:
74b6d7d13307 ("net: dsa: realtek: register the MDIO bus under devres")
5135e96a3dd2 ("net: dsa: don't allocate the slave_mii_bus using devres")
mdiobus_free() will panic when called from devm_mdiobus_free() <-
devres_release_all() <- __device_release_driver(), and that mdiobus was
not previously unregistered.
The GSWIP switch is a platform device, so the initial set of constraints
that I thought would cause this (I2C or SPI buses which call ->remove on
->shutdown) do not apply. But there is one more which applies here.
If the DSA master itself is on a bus that calls ->remove from ->shutdown
(like dpaa2-eth, which is on the fsl-mc bus), there is a device link
between the switch and the DSA master, and device_links_unbind_consumers()
will unbind the GSWIP switch driver on shutdown.
So the same treatment must be applied to all DSA switch drivers, which
is: either use devres for both the mdiobus allocation and registration,
or don't use devres at all.
The gswip driver has the code structure in place for orderly mdiobus
removal, so just replace devm_mdiobus_alloc() with the non-devres
variant, and add manual free where necessary, to ensure that we don't
let devres free a still-registered bus. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/proc: task_mmu.c: don't read mapcount for migration entry
The syzbot reported the below BUG:
kernel BUG at include/linux/page-flags.h:785!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 4392 Comm: syz-executor560 Not tainted 5.16.0-rc6-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:PageDoubleMap include/linux/page-flags.h:785 [inline]
RIP: 0010:__page_mapcount+0x2d2/0x350 mm/util.c:744
Call Trace:
page_mapcount include/linux/mm.h:837 [inline]
smaps_account+0x470/0xb10 fs/proc/task_mmu.c:466
smaps_pte_entry fs/proc/task_mmu.c:538 [inline]
smaps_pte_range+0x611/0x1250 fs/proc/task_mmu.c:601
walk_pmd_range mm/pagewalk.c:128 [inline]
walk_pud_range mm/pagewalk.c:205 [inline]
walk_p4d_range mm/pagewalk.c:240 [inline]
walk_pgd_range mm/pagewalk.c:277 [inline]
__walk_page_range+0xe23/0x1ea0 mm/pagewalk.c:379
walk_page_vma+0x277/0x350 mm/pagewalk.c:530
smap_gather_stats.part.0+0x148/0x260 fs/proc/task_mmu.c:768
smap_gather_stats fs/proc/task_mmu.c:741 [inline]
show_smap+0xc6/0x440 fs/proc/task_mmu.c:822
seq_read_iter+0xbb0/0x1240 fs/seq_file.c:272
seq_read+0x3e0/0x5b0 fs/seq_file.c:162
vfs_read+0x1b5/0x600 fs/read_write.c:479
ksys_read+0x12d/0x250 fs/read_write.c:619
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
The reproducer was trying to read /proc/$PID/smaps when calling
MADV_FREE at the mean time. MADV_FREE may split THPs if it is called
for partial THP. It may trigger the below race:
CPU A CPU B
----- -----
smaps walk: MADV_FREE:
page_mapcount()
PageCompound()
split_huge_page()
page = compound_head(page)
PageDoubleMap(page)
When calling PageDoubleMap() this page is not a tail page of THP anymore
so the BUG is triggered.
This could be fixed by elevated refcount of the page before calling
mapcount, but that would prevent it from counting migration entries, and
it seems overkilling because the race just could happen when PMD is
split so all PTE entries of tail pages are actually migration entries,
and smaps_account() does treat migration entries as mapcount == 1 as
Kirill pointed out.
Add a new parameter for smaps_account() to tell this entry is migration
entry then skip calling page_mapcount(). Don't skip getting mapcount
for device private entries since they do track references with mapcount.
Pagemap also has the similar issue although it was not reported. Fixed
it as well.
[shy828301@gmail.com: v4]
[nathan@kernel.org: avoid unused variable warning in pagemap_pmd_range()] |
| In the Linux kernel, the following vulnerability has been resolved:
perf: Fix list corruption in perf_cgroup_switch()
There's list corruption on cgrp_cpuctx_list. This happens on the
following path:
perf_cgroup_switch: list_for_each_entry(cgrp_cpuctx_list)
cpu_ctx_sched_in
ctx_sched_in
ctx_pinned_sched_in
merge_sched_in
perf_cgroup_event_disable: remove the event from the list
Use list_for_each_entry_safe() to allow removing an entry during
iteration. |
| In the Linux kernel, the following vulnerability has been resolved:
s390/cio: verify the driver availability for path_event call
If no driver is attached to a device or the driver does not provide the
path_event function, an FCES path-event on this device could end up in a
kernel-panic. Verify the driver availability before the path_event
function call. |
| In the Linux kernel, the following vulnerability has been resolved:
mm: don't try to NUMA-migrate COW pages that have other uses
Oded Gabbay reports that enabling NUMA balancing causes corruption with
his Gaudi accelerator test load:
"All the details are in the bug, but the bottom line is that somehow,
this patch causes corruption when the numa balancing feature is
enabled AND we don't use process affinity AND we use GUP to pin pages
so our accelerator can DMA to/from system memory.
Either disabling numa balancing, using process affinity to bind to
specific numa-node or reverting this patch causes the bug to
disappear"
and Oded bisected the issue to commit 09854ba94c6a ("mm: do_wp_page()
simplification").
Now, the NUMA balancing shouldn't actually be changing the writability
of a page, and as such shouldn't matter for COW. But it appears it
does. Suspicious.
However, regardless of that, the condition for enabling NUMA faults in
change_pte_range() is nonsensical. It uses "page_mapcount(page)" to
decide if a COW page should be NUMA-protected or not, and that makes
absolutely no sense.
The number of mappings a page has is irrelevant: not only does GUP get a
reference to a page as in Oded's case, but the other mappings migth be
paged out and the only reference to them would be in the page count.
Since we should never try to NUMA-balance a page that we can't move
anyway due to other references, just fix the code to use 'page_count()'.
Oded confirms that that fixes his issue.
Now, this does imply that something in NUMA balancing ends up changing
page protections (other than the obvious one of making the page
inaccessible to get the NUMA faulting information). Otherwise the COW
simplification wouldn't matter - since doing the GUP on the page would
make sure it's writable.
The cause of that permission change would be good to figure out too,
since it clearly results in spurious COW events - but fixing the
nonsensical test that just happened to work before is obviously the
CorrectThing(tm) to do regardless. |
| A vulnerability, which was classified as critical, was found in quequnlong shiyi-blog up to 1.2.1. Affected is an unknown function of the file /api/sys/user/verifyPassword/ of the component Administrator Backend. The manipulation leads to improper authentication. It is possible to launch the attack remotely. The exploit has been disclosed to the public and may be used. The vendor was contacted early about this disclosure but did not respond in any way. |
| Trend Micro Cleaner One Pro is vulnerable to a Privilege Escalation vulnerability that could allow a local attacker to unintentionally delete privileged Trend Micro files including its own. |
| A vulnerability was found in LinZhaoguan pb-cms 1.0.0 and classified as critical. This issue affects some unknown processing of the file /admin#themes of the component Add New Topic Handler. The manipulation of the argument Topic Key leads to deserialization. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used. |