CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
Nagios Log Server before 2024R1.3.2 allows authenticated users (with read-only API access) to stop the Elasticsearch service via a /nagioslogserver/index.php/api/system/stop?subsystem=elasticsearch call. The service stops even though "message": "Could not stop elasticsearch" is in the API response. This is GL:NLS#474. |
A Server-Side Request Forgery (SSRF) vulnerability exists in the MediaConnector class within the vLLM project's multimodal feature set. The load_from_url and load_from_url_async methods fetch and process media from user-provided URLs without adequate restrictions on the target hosts. This allows an attacker to coerce the vLLM server into making arbitrary requests to internal network resources. |
A weakness has been identified in D-Link DI-7001 MINI 24.04.18B1. Impacted is an unknown function of the file /upgrade_filter.asp. This manipulation of the argument path causes os command injection. The attack may be initiated remotely. The exploit has been made available to the public and could be exploited. |
In Ankitects Anki before 25.02.5, a crafted shared deck can place a YouTube downloader executable in the media folder, and this is executed for a YouTube link in the deck. The executable name could be youtube-dl.exe or yt-dlp.exe or yt-dlp_x86.exe. |
In Ankitects Anki before 25.02.6, crafted sound file references could cause files to be written to arbitrary locations on Windows and Linux (media file pathnames are not necessarily relative to the media folder). |
OPEXUS FOIAXpress before 11.13.3.0 allows an administrative user to inject JavaScript or other content within the Annual Report Enterprise Banner image upload field. Injected content is executed in the context of other users when they generate an Annual Report. Successful exploitation allows the administrative user to perform actions on behalf of the target, including stealing session cookies, user credentials, or sensitive data. |
In the Linux kernel, the following vulnerability has been resolved:
fbdev: omapfb: lcd_mipid: Fix an error handling path in mipid_spi_probe()
If 'mipid_detect()' fails, we must free 'md' to avoid a memory leak. |
In the Linux kernel, the following vulnerability has been resolved:
vdpa: Add features attr to vdpa_nl_policy for nlattr length check
The vdpa_nl_policy structure is used to validate the nlattr when parsing
the incoming nlmsg. It will ensure the attribute being described produces
a valid nlattr pointer in info->attrs before entering into each handler
in vdpa_nl_ops.
That is to say, the missing part in vdpa_nl_policy may lead to illegal
nlattr after parsing, which could lead to OOB read just like CVE-2023-3773.
This patch adds the missing nla_policy for vdpa features attr to avoid
such bugs. |
In the Linux kernel, the following vulnerability has been resolved:
ring-buffer: Fix deadloop issue on reading trace_pipe
Soft lockup occurs when reading file 'trace_pipe':
watchdog: BUG: soft lockup - CPU#6 stuck for 22s! [cat:4488]
[...]
RIP: 0010:ring_buffer_empty_cpu+0xed/0x170
RSP: 0018:ffff88810dd6fc48 EFLAGS: 00000246
RAX: 0000000000000000 RBX: 0000000000000246 RCX: ffffffff93d1aaeb
RDX: ffff88810a280040 RSI: 0000000000000008 RDI: ffff88811164b218
RBP: ffff88811164b218 R08: 0000000000000000 R09: ffff88815156600f
R10: ffffed102a2acc01 R11: 0000000000000001 R12: 0000000051651901
R13: 0000000000000000 R14: ffff888115e49500 R15: 0000000000000000
[...]
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f8d853c2000 CR3: 000000010dcd8000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
__find_next_entry+0x1a8/0x4b0
? peek_next_entry+0x250/0x250
? down_write+0xa5/0x120
? down_write_killable+0x130/0x130
trace_find_next_entry_inc+0x3b/0x1d0
tracing_read_pipe+0x423/0xae0
? tracing_splice_read_pipe+0xcb0/0xcb0
vfs_read+0x16b/0x490
ksys_read+0x105/0x210
? __ia32_sys_pwrite64+0x200/0x200
? switch_fpu_return+0x108/0x220
do_syscall_64+0x33/0x40
entry_SYSCALL_64_after_hwframe+0x61/0xc6
Through the vmcore, I found it's because in tracing_read_pipe(),
ring_buffer_empty_cpu() found some buffer is not empty but then it
cannot read anything due to "rb_num_of_entries() == 0" always true,
Then it infinitely loop the procedure due to user buffer not been
filled, see following code path:
tracing_read_pipe() {
... ...
waitagain:
tracing_wait_pipe() // 1. find non-empty buffer here
trace_find_next_entry_inc() // 2. loop here try to find an entry
__find_next_entry()
ring_buffer_empty_cpu(); // 3. find non-empty buffer
peek_next_entry() // 4. but peek always return NULL
ring_buffer_peek()
rb_buffer_peek()
rb_get_reader_page()
// 5. because rb_num_of_entries() == 0 always true here
// then return NULL
// 6. user buffer not been filled so goto 'waitgain'
// and eventually leads to an deadloop in kernel!!!
}
By some analyzing, I found that when resetting ringbuffer, the 'entries'
of its pages are not all cleared (see rb_reset_cpu()). Then when reducing
the ringbuffer, and if some reduced pages exist dirty 'entries' data, they
will be added into 'cpu_buffer->overrun' (see rb_remove_pages()), which
cause wrong 'overrun' count and eventually cause the deadloop issue.
To fix it, we need to clear every pages in rb_reset_cpu(). |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_event: call disconnect callback before deleting conn
In hci_cs_disconnect, we do hci_conn_del even if disconnection failed.
ISO, L2CAP and SCO connections refer to the hci_conn without
hci_conn_get, so disconn_cfm must be called so they can clean up their
conn, otherwise use-after-free occurs.
ISO:
==========================================================
iso_sock_connect:880: sk 00000000eabd6557
iso_connect_cis:356: 70:1a:b8:98:ff:a2 -> 28:3d:c2:4a:7e:da
...
iso_conn_add:140: hcon 000000001696f1fd conn 00000000b6251073
hci_dev_put:1487: hci0 orig refcnt 17
__iso_chan_add:214: conn 00000000b6251073
iso_sock_clear_timer:117: sock 00000000eabd6557 state 3
...
hci_rx_work:4085: hci0 Event packet
hci_event_packet:7601: hci0: event 0x0f
hci_cmd_status_evt:4346: hci0: opcode 0x0406
hci_cs_disconnect:2760: hci0: status 0x0c
hci_sent_cmd_data:3107: hci0 opcode 0x0406
hci_conn_del:1151: hci0 hcon 000000001696f1fd handle 2560
hci_conn_unlink:1102: hci0: hcon 000000001696f1fd
hci_conn_drop:1451: hcon 00000000d8521aaf orig refcnt 2
hci_chan_list_flush:2780: hcon 000000001696f1fd
hci_dev_put:1487: hci0 orig refcnt 21
hci_dev_put:1487: hci0 orig refcnt 20
hci_req_cmd_complete:3978: opcode 0x0406 status 0x0c
... <no iso_* activity on sk/conn> ...
iso_sock_sendmsg:1098: sock 00000000dea5e2e0, sk 00000000eabd6557
BUG: kernel NULL pointer dereference, address: 0000000000000668
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP PTI
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-1.fc38 04/01/2014
RIP: 0010:iso_sock_sendmsg (net/bluetooth/iso.c:1112) bluetooth
==========================================================
L2CAP:
==================================================================
hci_cmd_status_evt:4359: hci0: opcode 0x0406
hci_cs_disconnect:2760: hci0: status 0x0c
hci_sent_cmd_data:3085: hci0 opcode 0x0406
hci_conn_del:1151: hci0 hcon ffff88800c999000 handle 3585
hci_conn_unlink:1102: hci0: hcon ffff88800c999000
hci_chan_list_flush:2780: hcon ffff88800c999000
hci_chan_del:2761: hci0 hcon ffff88800c999000 chan ffff888018ddd280
...
BUG: KASAN: slab-use-after-free in hci_send_acl+0x2d/0x540 [bluetooth]
Read of size 8 at addr ffff888018ddd298 by task bluetoothd/1175
CPU: 0 PID: 1175 Comm: bluetoothd Tainted: G E 6.4.0-rc4+ #2
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-1.fc38 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x5b/0x90
print_report+0xcf/0x670
? __virt_addr_valid+0xf8/0x180
? hci_send_acl+0x2d/0x540 [bluetooth]
kasan_report+0xa8/0xe0
? hci_send_acl+0x2d/0x540 [bluetooth]
hci_send_acl+0x2d/0x540 [bluetooth]
? __pfx___lock_acquire+0x10/0x10
l2cap_chan_send+0x1fd/0x1300 [bluetooth]
? l2cap_sock_sendmsg+0xf2/0x170 [bluetooth]
? __pfx_l2cap_chan_send+0x10/0x10 [bluetooth]
? lock_release+0x1d5/0x3c0
? mark_held_locks+0x1a/0x90
l2cap_sock_sendmsg+0x100/0x170 [bluetooth]
sock_write_iter+0x275/0x280
? __pfx_sock_write_iter+0x10/0x10
? __pfx___lock_acquire+0x10/0x10
do_iter_readv_writev+0x176/0x220
? __pfx_do_iter_readv_writev+0x10/0x10
? find_held_lock+0x83/0xa0
? selinux_file_permission+0x13e/0x210
do_iter_write+0xda/0x340
vfs_writev+0x1b4/0x400
? __pfx_vfs_writev+0x10/0x10
? __seccomp_filter+0x112/0x750
? populate_seccomp_data+0x182/0x220
? __fget_light+0xdf/0x100
? do_writev+0x19d/0x210
do_writev+0x19d/0x210
? __pfx_do_writev+0x10/0x10
? mark_held_locks+0x1a/0x90
do_syscall_64+0x60/0x90
? lockdep_hardirqs_on_prepare+0x149/0x210
? do_syscall_64+0x6c/0x90
? lockdep_hardirqs_on_prepare+0x149/0x210
entry_SYSCALL_64_after_hwframe+0x72/0xdc
RIP: 0033:0x7ff45cb23e64
Code: 15 d1 1f 0d 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b8 0f 1f 00 f3 0f 1e fa 80 3d 9d a7 0d 00 00 74 13 b8 14 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 54 c3 0f 1f 00 48 83 ec 28 89 54 24 1c 48 89
RSP: 002b:00007fff21ae09b8 EFLAGS: 00000202 ORIG_RAX: 0000000000000014
RAX: ffffffffffffffda RBX:
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
clk: Fix memory leak in devm_clk_notifier_register()
devm_clk_notifier_register() allocates a devres resource for clk
notifier but didn't register that to the device, so the notifier didn't
get unregistered on device detach and the allocated resource was leaked.
Fix the issue by registering the resource through devres_add().
This issue was found with kmemleak on a Chromebook. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: target: iscsi: Fix buffer overflow in lio_target_nacl_info_show()
The function lio_target_nacl_info_show() uses sprintf() in a loop to print
details for every iSCSI connection in a session without checking for the
buffer length. With enough iSCSI connections it's possible to overflow the
buffer provided by configfs and corrupt the memory.
This patch replaces sprintf() with sysfs_emit_at() that checks for buffer
boundries. |
OPEXUS FOIAXpress before 11.13.3.0 allows an administrative user to upload JavaScript or other content embedded in an SVG image used as a logo. Injected content is executed in the context of other users when they view affected pages. Successful exploitation allows the administrative user to perform actions on behalf of the target, including stealing session cookies, user credentials, or sensitive data. |
An insecure implementation of the proprietary protocol DNET in Product CGM MEDICO allows attackers within the intranet to eavesdrop and manipulate data on the protocol because encryption is optional for this connection. |
A vulnerability has been found in Campcodes Advanced Online Voting Management System 1.0. The impacted element is an unknown function of the file /admin/login.php. Such manipulation of the argument Username leads to sql injection. The attack can be executed remotely. The exploit has been disclosed to the public and may be used. |
In the Linux kernel, the following vulnerability has been resolved:
x86: fix clear_user_rep_good() exception handling annotation
This code no longer exists in mainline, because it was removed in
commit d2c95f9d6802 ("x86: don't use REP_GOOD or ERMS for user memory
clearing") upstream.
However, rather than backport the full range of x86 memory clearing and
copying cleanups, fix the exception table annotation placement for the
final 'rep movsb' in clear_user_rep_good(): rather than pointing at the
actual instruction that did the user space access, it pointed to the
register move just before it.
That made sense from a code flow standpoint, but not from an actual
usage standpoint: it means that if user access takes an exception, the
exception handler won't actually find the instruction in the exception
tables.
As a result, rather than fixing it up and returning -EFAULT, it would
then turn it into a kernel oops report instead, something like:
BUG: unable to handle page fault for address: 0000000020081000
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
...
RIP: 0010:clear_user_rep_good+0x1c/0x30 arch/x86/lib/clear_page_64.S:147
...
Call Trace:
__clear_user arch/x86/include/asm/uaccess_64.h:103 [inline]
clear_user arch/x86/include/asm/uaccess_64.h:124 [inline]
iov_iter_zero+0x709/0x1290 lib/iov_iter.c:800
iomap_dio_hole_iter fs/iomap/direct-io.c:389 [inline]
iomap_dio_iter fs/iomap/direct-io.c:440 [inline]
__iomap_dio_rw+0xe3d/0x1cd0 fs/iomap/direct-io.c:601
iomap_dio_rw+0x40/0xa0 fs/iomap/direct-io.c:689
ext4_dio_read_iter fs/ext4/file.c:94 [inline]
ext4_file_read_iter+0x4be/0x690 fs/ext4/file.c:145
call_read_iter include/linux/fs.h:2183 [inline]
do_iter_readv_writev+0x2e0/0x3b0 fs/read_write.c:733
do_iter_read+0x2f2/0x750 fs/read_write.c:796
vfs_readv+0xe5/0x150 fs/read_write.c:916
do_preadv+0x1b6/0x270 fs/read_write.c:1008
__do_sys_preadv2 fs/read_write.c:1070 [inline]
__se_sys_preadv2 fs/read_write.c:1061 [inline]
__x64_sys_preadv2+0xef/0x150 fs/read_write.c:1061
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x39/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
which then looks like a filesystem bug rather than the incorrect
exception annotation that it is.
[ The alternative to this one-liner fix is to take the upstream series
that cleans this all up:
68674f94ffc9 ("x86: don't use REP_GOOD or ERMS for small memory copies")
20f3337d350c ("x86: don't use REP_GOOD or ERMS for small memory clearing")
adfcf4231b8c ("x86: don't use REP_GOOD or ERMS for user memory copies")
* d2c95f9d6802 ("x86: don't use REP_GOOD or ERMS for user memory clearing")
3639a535587d ("x86: move stac/clac from user copy routines into callers")
577e6a7fd50d ("x86: inline the 'rep movs' in user copies for the FSRM case")
8c9b6a88b7e2 ("x86: improve on the non-rep 'clear_user' function")
427fda2c8a49 ("x86: improve on the non-rep 'copy_user' function")
* e046fe5a36a9 ("x86: set FSRS automatically on AMD CPUs that have FSRM")
e1f2750edc4a ("x86: remove 'zerorest' argument from __copy_user_nocache()")
034ff37d3407 ("x86: rewrite '__copy_user_nocache' function")
with either the whole series or at a minimum the two marked commits
being needed to fix this issue ] |
A security flaw has been discovered in projectworlds Advanced Library Management System 1.0. Affected by this vulnerability is an unknown functionality of the file /edit_book.php. The manipulation of the argument image results in unrestricted upload. It is possible to launch the attack remotely. The exploit has been released to the public and may be exploited. |
In the Linux kernel, the following vulnerability has been resolved:
rcu: Avoid stack overflow due to __rcu_irq_enter_check_tick() being kprobe-ed
Registering a kprobe on __rcu_irq_enter_check_tick() can cause kernel
stack overflow as shown below. This issue can be reproduced by enabling
CONFIG_NO_HZ_FULL and booting the kernel with argument "nohz_full=",
and then giving the following commands at the shell prompt:
# cd /sys/kernel/tracing/
# echo 'p:mp1 __rcu_irq_enter_check_tick' >> kprobe_events
# echo 1 > events/kprobes/enable
This commit therefore adds __rcu_irq_enter_check_tick() to the kprobes
blacklist using NOKPROBE_SYMBOL().
Insufficient stack space to handle exception!
ESR: 0x00000000f2000004 -- BRK (AArch64)
FAR: 0x0000ffffccf3e510
Task stack: [0xffff80000ad30000..0xffff80000ad38000]
IRQ stack: [0xffff800008050000..0xffff800008058000]
Overflow stack: [0xffff089c36f9f310..0xffff089c36fa0310]
CPU: 5 PID: 190 Comm: bash Not tainted 6.2.0-rc2-00320-g1f5abbd77e2c #19
Hardware name: linux,dummy-virt (DT)
pstate: 400003c5 (nZcv DAIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __rcu_irq_enter_check_tick+0x0/0x1b8
lr : ct_nmi_enter+0x11c/0x138
sp : ffff80000ad30080
x29: ffff80000ad30080 x28: ffff089c82e20000 x27: 0000000000000000
x26: 0000000000000000 x25: ffff089c02a8d100 x24: 0000000000000000
x23: 00000000400003c5 x22: 0000ffffccf3e510 x21: ffff089c36fae148
x20: ffff80000ad30120 x19: ffffa8da8fcce148 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000 x15: ffffa8da8e44ea6c
x14: ffffa8da8e44e968 x13: ffffa8da8e03136c x12: 1fffe113804d6809
x11: ffff6113804d6809 x10: 0000000000000a60 x9 : dfff800000000000
x8 : ffff089c026b404f x7 : 00009eec7fb297f7 x6 : 0000000000000001
x5 : ffff80000ad30120 x4 : dfff800000000000 x3 : ffffa8da8e3016f4
x2 : 0000000000000003 x1 : 0000000000000000 x0 : 0000000000000000
Kernel panic - not syncing: kernel stack overflow
CPU: 5 PID: 190 Comm: bash Not tainted 6.2.0-rc2-00320-g1f5abbd77e2c #19
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace+0xf8/0x108
show_stack+0x20/0x30
dump_stack_lvl+0x68/0x84
dump_stack+0x1c/0x38
panic+0x214/0x404
add_taint+0x0/0xf8
panic_bad_stack+0x144/0x160
handle_bad_stack+0x38/0x58
__bad_stack+0x78/0x7c
__rcu_irq_enter_check_tick+0x0/0x1b8
arm64_enter_el1_dbg.isra.0+0x14/0x20
el1_dbg+0x2c/0x90
el1h_64_sync_handler+0xcc/0xe8
el1h_64_sync+0x64/0x68
__rcu_irq_enter_check_tick+0x0/0x1b8
arm64_enter_el1_dbg.isra.0+0x14/0x20
el1_dbg+0x2c/0x90
el1h_64_sync_handler+0xcc/0xe8
el1h_64_sync+0x64/0x68
__rcu_irq_enter_check_tick+0x0/0x1b8
arm64_enter_el1_dbg.isra.0+0x14/0x20
el1_dbg+0x2c/0x90
el1h_64_sync_handler+0xcc/0xe8
el1h_64_sync+0x64/0x68
__rcu_irq_enter_check_tick+0x0/0x1b8
[...]
el1_dbg+0x2c/0x90
el1h_64_sync_handler+0xcc/0xe8
el1h_64_sync+0x64/0x68
__rcu_irq_enter_check_tick+0x0/0x1b8
arm64_enter_el1_dbg.isra.0+0x14/0x20
el1_dbg+0x2c/0x90
el1h_64_sync_handler+0xcc/0xe8
el1h_64_sync+0x64/0x68
__rcu_irq_enter_check_tick+0x0/0x1b8
arm64_enter_el1_dbg.isra.0+0x14/0x20
el1_dbg+0x2c/0x90
el1h_64_sync_handler+0xcc/0xe8
el1h_64_sync+0x64/0x68
__rcu_irq_enter_check_tick+0x0/0x1b8
el1_interrupt+0x28/0x60
el1h_64_irq_handler+0x18/0x28
el1h_64_irq+0x64/0x68
__ftrace_set_clr_event_nolock+0x98/0x198
__ftrace_set_clr_event+0x58/0x80
system_enable_write+0x144/0x178
vfs_write+0x174/0x738
ksys_write+0xd0/0x188
__arm64_sys_write+0x4c/0x60
invoke_syscall+0x64/0x180
el0_svc_common.constprop.0+0x84/0x160
do_el0_svc+0x48/0xe8
el0_svc+0x34/0xd0
el0t_64_sync_handler+0xb8/0xc0
el0t_64_sync+0x190/0x194
SMP: stopping secondary CPUs
Kernel Offset: 0x28da86000000 from 0xffff800008000000
PHYS_OFFSET: 0xfffff76600000000
CPU features: 0x00000,01a00100,0000421b
Memory Limit: none |
The Find Me On WordPress plugin through 2.0.9.1 does not sanitize and escape a parameter before using it in a SQL statement, allowing subscribers and above to perform SQL injection attacks |
A vulnerability was identified in itsourcecode Leave Management System 1.0. This affects an unknown function of the file /reset.php. Such manipulation of the argument employid leads to sql injection. The attack may be performed from remote. The exploit is publicly available and might be used. |