CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
spi: bcm-qspi: return error if neither hif_mspi nor mspi is available
If neither a "hif_mspi" nor "mspi" resource is present, the driver will
just early exit in probe but still return success. Apart from not doing
anything meaningful, this would then also lead to a null pointer access
on removal, as platform_get_drvdata() would return NULL, which it would
then try to dereference when trying to unregister the spi master.
Fix this by unconditionally calling devm_ioremap_resource(), as it can
handle a NULL res and will then return a viable ERR_PTR() if we get one.
The "return 0;" was previously a "goto qspi_resource_err;" where then
ret was returned, but since ret was still initialized to 0 at this place
this was a valid conversion in 63c5395bb7a9 ("spi: bcm-qspi: Fix
use-after-free on unbind"). The issue was not introduced by this commit,
only made more obvious. |
In the Linux kernel, the following vulnerability has been resolved:
drivers/perf: hisi: Don't migrate perf to the CPU going to teardown
The driver needs to migrate the perf context if the current using CPU going
to teardown. By the time calling the cpuhp::teardown() callback the
cpu_online_mask() hasn't updated yet and still includes the CPU going to
teardown. In current driver's implementation we may migrate the context
to the teardown CPU and leads to the below calltrace:
...
[ 368.104662][ T932] task:cpuhp/0 state:D stack: 0 pid: 15 ppid: 2 flags:0x00000008
[ 368.113699][ T932] Call trace:
[ 368.116834][ T932] __switch_to+0x7c/0xbc
[ 368.120924][ T932] __schedule+0x338/0x6f0
[ 368.125098][ T932] schedule+0x50/0xe0
[ 368.128926][ T932] schedule_preempt_disabled+0x18/0x24
[ 368.134229][ T932] __mutex_lock.constprop.0+0x1d4/0x5dc
[ 368.139617][ T932] __mutex_lock_slowpath+0x1c/0x30
[ 368.144573][ T932] mutex_lock+0x50/0x60
[ 368.148579][ T932] perf_pmu_migrate_context+0x84/0x2b0
[ 368.153884][ T932] hisi_pcie_pmu_offline_cpu+0x90/0xe0 [hisi_pcie_pmu]
[ 368.160579][ T932] cpuhp_invoke_callback+0x2a0/0x650
[ 368.165707][ T932] cpuhp_thread_fun+0xe4/0x190
[ 368.170316][ T932] smpboot_thread_fn+0x15c/0x1a0
[ 368.175099][ T932] kthread+0x108/0x13c
[ 368.179012][ T932] ret_from_fork+0x10/0x18
...
Use function cpumask_any_but() to find one correct active cpu to fixes
this issue. |
In the Linux kernel, the following vulnerability has been resolved:
octeontx2-af: Add validation before accessing cgx and lmac
with the addition of new MAC blocks like CN10K RPM and CN10KB
RPM_USX, LMACs are noncontiguous and CGX blocks are also
noncontiguous. But during RVU driver initialization, the driver
is assuming they are contiguous and trying to access
cgx or lmac with their id which is resulting in kernel panic.
This patch fixes the issue by adding proper checks.
[ 23.219150] pc : cgx_lmac_read+0x38/0x70
[ 23.219154] lr : rvu_program_channels+0x3f0/0x498
[ 23.223852] sp : ffff000100d6fc80
[ 23.227158] x29: ffff000100d6fc80 x28: ffff00010009f880 x27:
000000000000005a
[ 23.234288] x26: ffff000102586768 x25: 0000000000002500 x24:
fffffffffff0f000 |
In the Linux kernel, the following vulnerability has been resolved:
Input: exc3000 - properly stop timer on shutdown
We need to stop the timer on driver unbind or probe failures, otherwise
we get UAF/Oops. |
In the Linux kernel, the following vulnerability has been resolved:
perf trace: Really free the evsel->priv area
In 3cb4d5e00e037c70 ("perf trace: Free syscall tp fields in
evsel->priv") it only was freeing if strcmp(evsel->tp_format->system,
"syscalls") returned zero, while the corresponding initialization of
evsel->priv was being performed if it was _not_ zero, i.e. if the tp
system wasn't 'syscalls'.
Just stop looking for that and free it if evsel->priv was set, which
should be equivalent.
Also use the pre-existing evsel_trace__delete() function.
This resolves these leaks, detected with:
$ make EXTRA_CFLAGS="-fsanitize=address" BUILD_BPF_SKEL=1 CORESIGHT=1 O=/tmp/build/perf-tools-next -C tools/perf install-bin
=================================================================
==481565==ERROR: LeakSanitizer: detected memory leaks
Direct leak of 40 byte(s) in 1 object(s) allocated from:
#0 0x7f7343cba097 in calloc (/lib64/libasan.so.8+0xba097)
#1 0x987966 in zalloc (/home/acme/bin/perf+0x987966)
#2 0x52f9b9 in evsel_trace__new /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:307
#3 0x52f9b9 in evsel__syscall_tp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:333
#4 0x52f9b9 in evsel__init_raw_syscall_tp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:458
#5 0x52f9b9 in perf_evsel__raw_syscall_newtp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:480
#6 0x540e8b in trace__add_syscall_newtp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3212
#7 0x540e8b in trace__run /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3891
#8 0x540e8b in cmd_trace /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:5156
#9 0x5ef262 in run_builtin /home/acme/git/perf-tools-next/tools/perf/perf.c:323
#10 0x4196da in handle_internal_command /home/acme/git/perf-tools-next/tools/perf/perf.c:377
#11 0x4196da in run_argv /home/acme/git/perf-tools-next/tools/perf/perf.c:421
#12 0x4196da in main /home/acme/git/perf-tools-next/tools/perf/perf.c:537
#13 0x7f7342c4a50f in __libc_start_call_main (/lib64/libc.so.6+0x2750f)
Direct leak of 40 byte(s) in 1 object(s) allocated from:
#0 0x7f7343cba097 in calloc (/lib64/libasan.so.8+0xba097)
#1 0x987966 in zalloc (/home/acme/bin/perf+0x987966)
#2 0x52f9b9 in evsel_trace__new /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:307
#3 0x52f9b9 in evsel__syscall_tp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:333
#4 0x52f9b9 in evsel__init_raw_syscall_tp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:458
#5 0x52f9b9 in perf_evsel__raw_syscall_newtp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:480
#6 0x540dd1 in trace__add_syscall_newtp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3205
#7 0x540dd1 in trace__run /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3891
#8 0x540dd1 in cmd_trace /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:5156
#9 0x5ef262 in run_builtin /home/acme/git/perf-tools-next/tools/perf/perf.c:323
#10 0x4196da in handle_internal_command /home/acme/git/perf-tools-next/tools/perf/perf.c:377
#11 0x4196da in run_argv /home/acme/git/perf-tools-next/tools/perf/perf.c:421
#12 0x4196da in main /home/acme/git/perf-tools-next/tools/perf/perf.c:537
#13 0x7f7342c4a50f in __libc_start_call_main (/lib64/libc.so.6+0x2750f)
SUMMARY: AddressSanitizer: 80 byte(s) leaked in 2 allocation(s).
[root@quaco ~]#
With this we plug all leaks with "perf trace sleep 1". |
In the Linux kernel, the following vulnerability has been resolved:
ALSA: ac97: Fix possible NULL dereference in snd_ac97_mixer
smatch error:
sound/pci/ac97/ac97_codec.c:2354 snd_ac97_mixer() error:
we previously assumed 'rac97' could be null (see line 2072)
remove redundant assignment, return error if rac97 is NULL. |
In the Linux kernel, the following vulnerability has been resolved:
drm/i915/perf: add sentinel to xehp_oa_b_counters
Arrays passed to reg_in_range_table should end with empty record.
The patch solves KASAN detected bug with signature:
BUG: KASAN: global-out-of-bounds in xehp_is_valid_b_counter_addr+0x2c7/0x350 [i915]
Read of size 4 at addr ffffffffa1555d90 by task perf/1518
CPU: 4 PID: 1518 Comm: perf Tainted: G U 6.4.0-kasan_438-g3303d06107f3+ #1
Hardware name: Intel Corporation Meteor Lake Client Platform/MTL-P DDR5 SODIMM SBS RVP, BIOS MTLPFWI1.R00.3223.D80.2305311348 05/31/2023
Call Trace:
<TASK>
...
xehp_is_valid_b_counter_addr+0x2c7/0x350 [i915]
(cherry picked from commit 2f42c5afb34b5696cf5fe79e744f99be9b218798) |
In the Linux kernel, the following vulnerability has been resolved:
media: radio-shark: Add endpoint checks
The syzbot fuzzer was able to provoke a WARNING from the radio-shark2
driver:
------------[ cut here ]------------
usb 1-1: BOGUS urb xfer, pipe 1 != type 3
WARNING: CPU: 0 PID: 3271 at drivers/usb/core/urb.c:504 usb_submit_urb+0xed2/0x1880 drivers/usb/core/urb.c:504
Modules linked in:
CPU: 0 PID: 3271 Comm: kworker/0:3 Not tainted 6.1.0-rc4-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022
Workqueue: usb_hub_wq hub_event
RIP: 0010:usb_submit_urb+0xed2/0x1880 drivers/usb/core/urb.c:504
Code: 7c 24 18 e8 00 36 ea fb 48 8b 7c 24 18 e8 36 1c 02 ff 41 89 d8 44 89 e1 4c 89 ea 48 89 c6 48 c7 c7 a0 b6 90 8a e8 9a 29 b8 03 <0f> 0b e9 58 f8 ff ff e8 d2 35 ea fb 48 81 c5 c0 05 00 00 e9 84 f7
RSP: 0018:ffffc90003876dd0 EFLAGS: 00010282
RAX: 0000000000000000 RBX: 0000000000000003 RCX: 0000000000000000
RDX: ffff8880750b0040 RSI: ffffffff816152b8 RDI: fffff5200070edac
RBP: ffff8880172d81e0 R08: 0000000000000005 R09: 0000000000000000
R10: 0000000080000000 R11: 0000000000000000 R12: 0000000000000001
R13: ffff8880285c5040 R14: 0000000000000002 R15: ffff888017158200
FS: 0000000000000000(0000) GS:ffff8880b9a00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007ffe03235b90 CR3: 000000000bc8e000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
usb_start_wait_urb+0x101/0x4b0 drivers/usb/core/message.c:58
usb_bulk_msg+0x226/0x550 drivers/usb/core/message.c:387
shark_write_reg+0x1ff/0x2e0 drivers/media/radio/radio-shark2.c:88
...
The problem was caused by the fact that the driver does not check
whether the endpoints it uses are actually present and have the
appropriate types. This can be fixed by adding a simple check of
these endpoints (and similarly for the radio-shark driver). |
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath9k: hif_usb: fix memory leak of remain_skbs
hif_dev->remain_skb is allocated and used exclusively in
ath9k_hif_usb_rx_stream(). It is implied that an allocated remain_skb is
processed and subsequently freed (in error paths) only during the next
call of ath9k_hif_usb_rx_stream().
So, if the urbs are deallocated between those two calls due to the device
deinitialization or suspend, it is possible that ath9k_hif_usb_rx_stream()
is not called next time and the allocated remain_skb is leaked. Our local
Syzkaller instance was able to trigger that.
remain_skb makes sense when receiving two consecutive urbs which are
logically linked together, i.e. a specific data field from the first skb
indicates a cached skb to be allocated, memcpy'd with some data and
subsequently processed in the next call to ath9k_hif_usb_rx_stream(). Urbs
deallocation supposedly makes that link irrelevant so we need to free the
cached skb in those cases.
Fix the leak by introducing a function to explicitly free remain_skb (if
it is not NULL) when the rx urbs have been deallocated. remain_skb is NULL
when it has not been allocated at all (hif_dev struct is kzalloced) or
when it has been processed in next call to ath9k_hif_usb_rx_stream().
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
In the Linux kernel, the following vulnerability has been resolved:
ASoC: lpass: Fix for KASAN use_after_free out of bounds
When we run syzkaller we get below Out of Bounds error.
"KASAN: slab-out-of-bounds Read in regcache_flat_read"
Below is the backtrace of the issue:
BUG: KASAN: slab-out-of-bounds in regcache_flat_read+0x10c/0x110
Read of size 4 at addr ffffff8088fbf714 by task syz-executor.4/14144
CPU: 6 PID: 14144 Comm: syz-executor.4 Tainted: G W
Hardware name: Qualcomm Technologies, Inc. sc7280 CRD platform (rev5+) (DT)
Call trace:
dump_backtrace+0x0/0x4ec
show_stack+0x34/0x50
dump_stack_lvl+0xdc/0x11c
print_address_description+0x30/0x2d8
kasan_report+0x178/0x1e4
__asan_report_load4_noabort+0x44/0x50
regcache_flat_read+0x10c/0x110
regcache_read+0xf8/0x5a0
_regmap_read+0x45c/0x86c
_regmap_update_bits+0x128/0x290
regmap_update_bits_base+0xc0/0x15c
snd_soc_component_update_bits+0xa8/0x22c
snd_soc_component_write_field+0x68/0xd4
tx_macro_put_dec_enum+0x1d0/0x268
snd_ctl_elem_write+0x288/0x474
By Error checking and checking valid values issue gets rectifies. |
Vulnerability in the melis-core module of Melis Technology's Melis Platform, which, if exploited, allows an unauthenticated attacker to create an administrator account via a request to '/melis/MelisCore/ToolUser/addNewUser'. |
A logic error exists in the Falcon sensor for Windows that could allow an attacker, with the prior ability to execute code on a host, to delete arbitrary files. CrowdStrike released a security fix for this issue in Falcon sensor for Windows versions 7.24 and above and all Long Term Visibility (LTV) sensors.
There is no indication of exploitation of these issues in the wild. Our threat hunting and intelligence teams are actively monitoring for exploitation and we maintain visibility into any such attempts.
The Falcon sensor for Mac, the Falcon sensor for Linux and the Falcon sensor for Legacy Systems are not impacted by this.
CrowdStrike was made aware of this issue through our HackerOne bug bounty program. It was discovered by Cong Cheng and responsibly disclosed. |
The 'zipfile' module would not check the validity of the ZIP64 End of
Central Directory (EOCD) Locator record offset value would not be used to
locate the ZIP64 EOCD record, instead the ZIP64 EOCD record would be
assumed to be the previous record in the ZIP archive. This could be abused
to create ZIP archives that are handled differently by the 'zipfile' module
compared to other ZIP implementations.
Remediation maintains this behavior, but checks that the offset specified
in the ZIP64 EOCD Locator record matches the expected value. |
A vulnerability was found in wonderwhy-er DesktopCommanderMCP up to 0.2.13. The impacted element is the function CommandManager of the file src/command-manager.ts. Performing manipulation results in os command injection. It is possible to initiate the attack remotely. The exploit has been made public and could be used. |
A weakness has been identified in Campcodes Advanced Online Voting Management System 1.0. This vulnerability affects unknown code of the file /admin/voters_add.php. Executing manipulation of the argument photo can lead to unrestricted upload. The attack can be launched remotely. The exploit has been made available to the public and could be exploited. |
Server-Side Request Forgery (SSRF) in the Remote Browser Plugin in Sonatype Nexus Repository 2.x up to and including 2.15.2 allows unauthenticated remote attackers to exfiltrate proxy repository credentials via crafted HTTP requests. |
Opencast is a free, open-source platform to support the management of educational audio and video content. Prior to Opencast 17.8 and 18.2, in some situations, Opencast's editor may publish a video without notifying the user. This may lead to users accidentally publishing media not meant for publishing, and thus possibly exposing internal media. This risk of this actually impacting someone is very low, though. This can only be triggered by users with write access to an event. They also have to use the editor, which is usually an action taken if they want to publish media and not something users would use on internal media they do not want to publish. Finally, they have to first click on "Save & Publish" before then selecting the "Save" option. Nevertheless, while very unlikely, this can happen. This issue is fixed in Opencast 17.8 and 18.2. |
A security vulnerability has been detected in wonderwhy-er DesktopCommanderMCP up to 0.2.13. This vulnerability affects the function isPathAllowed of the file src/tools/filesystem.ts. The manipulation leads to symlink following. The attack can only be performed from a local environment. The attack's complexity is rated as high. It is stated that the exploitability is difficult. The exploit has been disclosed publicly and may be used. The vendor explains: "Our restriction features are designed as guardrails for LLMs to help them stay closer to what users want, rather than hardened security boundaries. (...) For users where security is a top priority, we continue to recommend using Desktop Commander with Docker, which provides actual isolation. (...) We'll keep this issue open for future consideration if we receive more user demand for improved restrictions." This vulnerability only affects products that are no longer supported by the maintainer. |
A vulnerability was detected in JhumanJ OpnForm up to 1.9.3. Affected by this issue is some unknown functionality of the file /answer. The manipulation results in unrestricted upload. The attack can be launched remotely. The exploit is now public and may be used. The patch is identified as 95c3e23856465d202e6aec10bdb6ee0688b5305a. It is advisable to implement a patch to correct this issue. |
Cleartext Storage of Sensitive Information in Memory vulnerability in ABB MConfig.This issue affects MConfig: through 1.4.9.21. |