| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: target: core: Fix null-ptr-deref in target_alloc_device()
There is a null-ptr-deref issue reported by KASAN:
BUG: KASAN: null-ptr-deref in target_alloc_device+0xbc4/0xbe0 [target_core_mod]
...
kasan_report+0xb9/0xf0
target_alloc_device+0xbc4/0xbe0 [target_core_mod]
core_dev_setup_virtual_lun0+0xef/0x1f0 [target_core_mod]
target_core_init_configfs+0x205/0x420 [target_core_mod]
do_one_initcall+0xdd/0x4e0
...
entry_SYSCALL_64_after_hwframe+0x76/0x7e
In target_alloc_device(), if allocing memory for dev queues fails, then
dev will be freed by dev->transport->free_device(), but dev->transport
is not initialized at that time, which will lead to a null pointer
reference problem.
Fixing this bug by freeing dev with hba->backend->ops->free_device(). |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix OOBs when building SMB2_IOCTL request
When using encryption, either enforced by the server or when using
'seal' mount option, the client will squash all compound request buffers
down for encryption into a single iov in smb2_set_next_command().
SMB2_ioctl_init() allocates a small buffer (448 bytes) to hold the
SMB2_IOCTL request in the first iov, and if the user passes an input
buffer that is greater than 328 bytes, smb2_set_next_command() will
end up writing off the end of @rqst->iov[0].iov_base as shown below:
mount.cifs //srv/share /mnt -o ...,seal
ln -s $(perl -e "print('a')for 1..1024") /mnt/link
BUG: KASAN: slab-out-of-bounds in
smb2_set_next_command.cold+0x1d6/0x24c [cifs]
Write of size 4116 at addr ffff8881148fcab8 by task ln/859
CPU: 1 UID: 0 PID: 859 Comm: ln Not tainted 6.12.0-rc3 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS
1.16.3-2.fc40 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x5d/0x80
? smb2_set_next_command.cold+0x1d6/0x24c [cifs]
print_report+0x156/0x4d9
? smb2_set_next_command.cold+0x1d6/0x24c [cifs]
? __virt_addr_valid+0x145/0x310
? __phys_addr+0x46/0x90
? smb2_set_next_command.cold+0x1d6/0x24c [cifs]
kasan_report+0xda/0x110
? smb2_set_next_command.cold+0x1d6/0x24c [cifs]
kasan_check_range+0x10f/0x1f0
__asan_memcpy+0x3c/0x60
smb2_set_next_command.cold+0x1d6/0x24c [cifs]
smb2_compound_op+0x238c/0x3840 [cifs]
? kasan_save_track+0x14/0x30
? kasan_save_free_info+0x3b/0x70
? vfs_symlink+0x1a1/0x2c0
? do_symlinkat+0x108/0x1c0
? __pfx_smb2_compound_op+0x10/0x10 [cifs]
? kmem_cache_free+0x118/0x3e0
? cifs_get_writable_path+0xeb/0x1a0 [cifs]
smb2_get_reparse_inode+0x423/0x540 [cifs]
? __pfx_smb2_get_reparse_inode+0x10/0x10 [cifs]
? rcu_is_watching+0x20/0x50
? __kmalloc_noprof+0x37c/0x480
? smb2_create_reparse_symlink+0x257/0x490 [cifs]
? smb2_create_reparse_symlink+0x38f/0x490 [cifs]
smb2_create_reparse_symlink+0x38f/0x490 [cifs]
? __pfx_smb2_create_reparse_symlink+0x10/0x10 [cifs]
? find_held_lock+0x8a/0xa0
? hlock_class+0x32/0xb0
? __build_path_from_dentry_optional_prefix+0x19d/0x2e0 [cifs]
cifs_symlink+0x24f/0x960 [cifs]
? __pfx_make_vfsuid+0x10/0x10
? __pfx_cifs_symlink+0x10/0x10 [cifs]
? make_vfsgid+0x6b/0xc0
? generic_permission+0x96/0x2d0
vfs_symlink+0x1a1/0x2c0
do_symlinkat+0x108/0x1c0
? __pfx_do_symlinkat+0x10/0x10
? strncpy_from_user+0xaa/0x160
__x64_sys_symlinkat+0xb9/0xf0
do_syscall_64+0xbb/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f08d75c13bb |
| In the Linux kernel, the following vulnerability has been resolved:
usb: typec: altmode should keep reference to parent
The altmode device release refers to its parent device, but without keeping
a reference to it.
When registering the altmode, get a reference to the parent and put it in
the release function.
Before this fix, when using CONFIG_DEBUG_KOBJECT_RELEASE, we see issues
like this:
[ 43.572860] kobject: 'port0.0' (ffff8880057ba008): kobject_release, parent 0000000000000000 (delayed 3000)
[ 43.573532] kobject: 'port0.1' (ffff8880057bd008): kobject_release, parent 0000000000000000 (delayed 1000)
[ 43.574407] kobject: 'port0' (ffff8880057b9008): kobject_release, parent 0000000000000000 (delayed 3000)
[ 43.575059] kobject: 'port1.0' (ffff8880057ca008): kobject_release, parent 0000000000000000 (delayed 4000)
[ 43.575908] kobject: 'port1.1' (ffff8880057c9008): kobject_release, parent 0000000000000000 (delayed 4000)
[ 43.576908] kobject: 'typec' (ffff8880062dbc00): kobject_release, parent 0000000000000000 (delayed 4000)
[ 43.577769] kobject: 'port1' (ffff8880057bf008): kobject_release, parent 0000000000000000 (delayed 3000)
[ 46.612867] ==================================================================
[ 46.613402] BUG: KASAN: slab-use-after-free in typec_altmode_release+0x38/0x129
[ 46.614003] Read of size 8 at addr ffff8880057b9118 by task kworker/2:1/48
[ 46.614538]
[ 46.614668] CPU: 2 UID: 0 PID: 48 Comm: kworker/2:1 Not tainted 6.12.0-rc1-00138-gedbae730ad31 #535
[ 46.615391] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014
[ 46.616042] Workqueue: events kobject_delayed_cleanup
[ 46.616446] Call Trace:
[ 46.616648] <TASK>
[ 46.616820] dump_stack_lvl+0x5b/0x7c
[ 46.617112] ? typec_altmode_release+0x38/0x129
[ 46.617470] print_report+0x14c/0x49e
[ 46.617769] ? rcu_read_unlock_sched+0x56/0x69
[ 46.618117] ? __virt_addr_valid+0x19a/0x1ab
[ 46.618456] ? kmem_cache_debug_flags+0xc/0x1d
[ 46.618807] ? typec_altmode_release+0x38/0x129
[ 46.619161] kasan_report+0x8d/0xb4
[ 46.619447] ? typec_altmode_release+0x38/0x129
[ 46.619809] ? process_scheduled_works+0x3cb/0x85f
[ 46.620185] typec_altmode_release+0x38/0x129
[ 46.620537] ? process_scheduled_works+0x3cb/0x85f
[ 46.620907] device_release+0xaf/0xf2
[ 46.621206] kobject_delayed_cleanup+0x13b/0x17a
[ 46.621584] process_scheduled_works+0x4f6/0x85f
[ 46.621955] ? __pfx_process_scheduled_works+0x10/0x10
[ 46.622353] ? hlock_class+0x31/0x9a
[ 46.622647] ? lock_acquired+0x361/0x3c3
[ 46.622956] ? move_linked_works+0x46/0x7d
[ 46.623277] worker_thread+0x1ce/0x291
[ 46.623582] ? __kthread_parkme+0xc8/0xdf
[ 46.623900] ? __pfx_worker_thread+0x10/0x10
[ 46.624236] kthread+0x17e/0x190
[ 46.624501] ? kthread+0xfb/0x190
[ 46.624756] ? __pfx_kthread+0x10/0x10
[ 46.625015] ret_from_fork+0x20/0x40
[ 46.625268] ? __pfx_kthread+0x10/0x10
[ 46.625532] ret_from_fork_asm+0x1a/0x30
[ 46.625805] </TASK>
[ 46.625953]
[ 46.626056] Allocated by task 678:
[ 46.626287] kasan_save_stack+0x24/0x44
[ 46.626555] kasan_save_track+0x14/0x2d
[ 46.626811] __kasan_kmalloc+0x3f/0x4d
[ 46.627049] __kmalloc_noprof+0x1bf/0x1f0
[ 46.627362] typec_register_port+0x23/0x491
[ 46.627698] cros_typec_probe+0x634/0xbb6
[ 46.628026] platform_probe+0x47/0x8c
[ 46.628311] really_probe+0x20a/0x47d
[ 46.628605] device_driver_attach+0x39/0x72
[ 46.628940] bind_store+0x87/0xd7
[ 46.629213] kernfs_fop_write_iter+0x1aa/0x218
[ 46.629574] vfs_write+0x1d6/0x29b
[ 46.629856] ksys_write+0xcd/0x13b
[ 46.630128] do_syscall_64+0xd4/0x139
[ 46.630420] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[ 46.630820]
[ 46.630946] Freed by task 48:
[ 46.631182] kasan_save_stack+0x24/0x44
[ 46.631493] kasan_save_track+0x14/0x2d
[ 46.631799] kasan_save_free_info+0x3f/0x4d
[ 46.632144] __kasan_slab_free+0x37/0x45
[ 46.632474]
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: bnep: fix wild-memory-access in proto_unregister
There's issue as follows:
KASAN: maybe wild-memory-access in range [0xdead...108-0xdead...10f]
CPU: 3 UID: 0 PID: 2805 Comm: rmmod Tainted: G W
RIP: 0010:proto_unregister+0xee/0x400
Call Trace:
<TASK>
__do_sys_delete_module+0x318/0x580
do_syscall_64+0xc1/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
As bnep_init() ignore bnep_sock_init()'s return value, and bnep_sock_init()
will cleanup all resource. Then when remove bnep module will call
bnep_sock_cleanup() to cleanup sock's resource.
To solve above issue just return bnep_sock_init()'s return value in
bnep_exit(). |
| In the Linux kernel, the following vulnerability has been resolved:
udf: fix uninit-value use in udf_get_fileshortad
Check for overflow when computing alen in udf_current_aext to mitigate
later uninit-value use in udf_get_fileshortad KMSAN bug[1].
After applying the patch reproducer did not trigger any issue[2].
[1] https://syzkaller.appspot.com/bug?extid=8901c4560b7ab5c2f9df
[2] https://syzkaller.appspot.com/x/log.txt?x=10242227980000 |
| In the Linux kernel, the following vulnerability has been resolved:
xfrm: validate new SA's prefixlen using SA family when sel.family is unset
This expands the validation introduced in commit 07bf7908950a ("xfrm:
Validate address prefix lengths in the xfrm selector.")
syzbot created an SA with
usersa.sel.family = AF_UNSPEC
usersa.sel.prefixlen_s = 128
usersa.family = AF_INET
Because of the AF_UNSPEC selector, verify_newsa_info doesn't put
limits on prefixlen_{s,d}. But then copy_from_user_state sets
x->sel.family to usersa.family (AF_INET). Do the same conversion in
verify_newsa_info before validating prefixlen_{s,d}, since that's how
prefixlen is going to be used later on. |
| In the Linux kernel, the following vulnerability has been resolved:
ACPI: PRM: Find EFI_MEMORY_RUNTIME block for PRM handler and context
PRMT needs to find the correct type of block to translate the PA-VA
mapping for EFI runtime services.
The issue arises because the PRMT is finding a block of type
EFI_CONVENTIONAL_MEMORY, which is not appropriate for runtime services
as described in Section 2.2.2 (Runtime Services) of the UEFI
Specification [1]. Since the PRM handler is a type of runtime service,
this causes an exception when the PRM handler is called.
[Firmware Bug]: Unable to handle paging request in EFI runtime service
WARNING: CPU: 22 PID: 4330 at drivers/firmware/efi/runtime-wrappers.c:341
__efi_queue_work+0x11c/0x170
Call trace:
Let PRMT find a block with EFI_MEMORY_RUNTIME for PRM handler and PRM
context.
If no suitable block is found, a warning message will be printed, but
the procedure continues to manage the next PRM handler.
However, if the PRM handler is actually called without proper allocation,
it would result in a failure during error handling.
By using the correct memory types for runtime services, ensure that the
PRM handler and the context are properly mapped in the virtual address
space during runtime, preventing the paging request error.
The issue is really that only memory that has been remapped for runtime
by the firmware can be used by the PRM handler, and so the region needs
to have the EFI_MEMORY_RUNTIME attribute.
[ rjw: Subject and changelog edits ] |
| In the Linux kernel, the following vulnerability has been resolved:
net: wwan: fix global oob in wwan_rtnl_policy
The variable wwan_rtnl_link_ops assign a *bigger* maxtype which leads to
a global out-of-bounds read when parsing the netlink attributes. Exactly
same bug cause as the oob fixed in commit b33fb5b801c6 ("net: qualcomm:
rmnet: fix global oob in rmnet_policy").
==================================================================
BUG: KASAN: global-out-of-bounds in validate_nla lib/nlattr.c:388 [inline]
BUG: KASAN: global-out-of-bounds in __nla_validate_parse+0x19d7/0x29a0 lib/nlattr.c:603
Read of size 1 at addr ffffffff8b09cb60 by task syz.1.66276/323862
CPU: 0 PID: 323862 Comm: syz.1.66276 Not tainted 6.1.70 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x177/0x231 lib/dump_stack.c:106
print_address_description mm/kasan/report.c:284 [inline]
print_report+0x14f/0x750 mm/kasan/report.c:395
kasan_report+0x139/0x170 mm/kasan/report.c:495
validate_nla lib/nlattr.c:388 [inline]
__nla_validate_parse+0x19d7/0x29a0 lib/nlattr.c:603
__nla_parse+0x3c/0x50 lib/nlattr.c:700
nla_parse_nested_deprecated include/net/netlink.h:1269 [inline]
__rtnl_newlink net/core/rtnetlink.c:3514 [inline]
rtnl_newlink+0x7bc/0x1fd0 net/core/rtnetlink.c:3623
rtnetlink_rcv_msg+0x794/0xef0 net/core/rtnetlink.c:6122
netlink_rcv_skb+0x1de/0x420 net/netlink/af_netlink.c:2508
netlink_unicast_kernel net/netlink/af_netlink.c:1326 [inline]
netlink_unicast+0x74b/0x8c0 net/netlink/af_netlink.c:1352
netlink_sendmsg+0x882/0xb90 net/netlink/af_netlink.c:1874
sock_sendmsg_nosec net/socket.c:716 [inline]
__sock_sendmsg net/socket.c:728 [inline]
____sys_sendmsg+0x5cc/0x8f0 net/socket.c:2499
___sys_sendmsg+0x21c/0x290 net/socket.c:2553
__sys_sendmsg net/socket.c:2582 [inline]
__do_sys_sendmsg net/socket.c:2591 [inline]
__se_sys_sendmsg+0x19e/0x270 net/socket.c:2589
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x45/0x90 arch/x86/entry/common.c:81
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f67b19a24ad
RSP: 002b:00007f67b17febb8 EFLAGS: 00000246 ORIG_RAX: 000000000000002e
RAX: ffffffffffffffda RBX: 00007f67b1b45f80 RCX: 00007f67b19a24ad
RDX: 0000000000000000 RSI: 0000000020005e40 RDI: 0000000000000004
RBP: 00007f67b1a1e01d R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 00007ffd2513764f R14: 00007ffd251376e0 R15: 00007f67b17fed40
</TASK>
The buggy address belongs to the variable:
wwan_rtnl_policy+0x20/0x40
The buggy address belongs to the physical page:
page:ffffea00002c2700 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0xb09c
flags: 0xfff00000001000(reserved|node=0|zone=1|lastcpupid=0x7ff)
raw: 00fff00000001000 ffffea00002c2708 ffffea00002c2708 0000000000000000
raw: 0000000000000000 0000000000000000 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
page_owner info is not present (never set?)
Memory state around the buggy address:
ffffffff8b09ca00: 05 f9 f9 f9 05 f9 f9 f9 00 01 f9 f9 00 01 f9 f9
ffffffff8b09ca80: 00 00 00 05 f9 f9 f9 f9 00 00 03 f9 f9 f9 f9 f9
>ffffffff8b09cb00: 00 00 00 00 05 f9 f9 f9 00 00 00 00 f9 f9 f9 f9
^
ffffffff8b09cb80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
==================================================================
According to the comment of `nla_parse_nested_deprecated`, use correct size
`IFLA_WWAN_MAX` here to fix this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
net: sched: fix use-after-free in taprio_change()
In 'taprio_change()', 'admin' pointer may become dangling due to sched
switch / removal caused by 'advance_sched()', and critical section
protected by 'q->current_entry_lock' is too small to prevent from such
a scenario (which causes use-after-free detected by KASAN). Fix this
by prefer 'rcu_replace_pointer()' over 'rcu_assign_pointer()' to update
'admin' immediately before an attempt to schedule freeing. |
| In the Linux kernel, the following vulnerability has been resolved:
net: sched: use RCU read-side critical section in taprio_dump()
Fix possible use-after-free in 'taprio_dump()' by adding RCU
read-side critical section there. Never seen on x86 but
found on a KASAN-enabled arm64 system when investigating
https://syzkaller.appspot.com/bug?extid=b65e0af58423fc8a73aa:
[T15862] BUG: KASAN: slab-use-after-free in taprio_dump+0xa0c/0xbb0
[T15862] Read of size 4 at addr ffff0000d4bb88f8 by task repro/15862
[T15862]
[T15862] CPU: 0 UID: 0 PID: 15862 Comm: repro Not tainted 6.11.0-rc1-00293-gdefaf1a2113a-dirty #2
[T15862] Hardware name: QEMU QEMU Virtual Machine, BIOS edk2-20240524-5.fc40 05/24/2024
[T15862] Call trace:
[T15862] dump_backtrace+0x20c/0x220
[T15862] show_stack+0x2c/0x40
[T15862] dump_stack_lvl+0xf8/0x174
[T15862] print_report+0x170/0x4d8
[T15862] kasan_report+0xb8/0x1d4
[T15862] __asan_report_load4_noabort+0x20/0x2c
[T15862] taprio_dump+0xa0c/0xbb0
[T15862] tc_fill_qdisc+0x540/0x1020
[T15862] qdisc_notify.isra.0+0x330/0x3a0
[T15862] tc_modify_qdisc+0x7b8/0x1838
[T15862] rtnetlink_rcv_msg+0x3c8/0xc20
[T15862] netlink_rcv_skb+0x1f8/0x3d4
[T15862] rtnetlink_rcv+0x28/0x40
[T15862] netlink_unicast+0x51c/0x790
[T15862] netlink_sendmsg+0x79c/0xc20
[T15862] __sock_sendmsg+0xe0/0x1a0
[T15862] ____sys_sendmsg+0x6c0/0x840
[T15862] ___sys_sendmsg+0x1ac/0x1f0
[T15862] __sys_sendmsg+0x110/0x1d0
[T15862] __arm64_sys_sendmsg+0x74/0xb0
[T15862] invoke_syscall+0x88/0x2e0
[T15862] el0_svc_common.constprop.0+0xe4/0x2a0
[T15862] do_el0_svc+0x44/0x60
[T15862] el0_svc+0x50/0x184
[T15862] el0t_64_sync_handler+0x120/0x12c
[T15862] el0t_64_sync+0x190/0x194
[T15862]
[T15862] Allocated by task 15857:
[T15862] kasan_save_stack+0x3c/0x70
[T15862] kasan_save_track+0x20/0x3c
[T15862] kasan_save_alloc_info+0x40/0x60
[T15862] __kasan_kmalloc+0xd4/0xe0
[T15862] __kmalloc_cache_noprof+0x194/0x334
[T15862] taprio_change+0x45c/0x2fe0
[T15862] tc_modify_qdisc+0x6a8/0x1838
[T15862] rtnetlink_rcv_msg+0x3c8/0xc20
[T15862] netlink_rcv_skb+0x1f8/0x3d4
[T15862] rtnetlink_rcv+0x28/0x40
[T15862] netlink_unicast+0x51c/0x790
[T15862] netlink_sendmsg+0x79c/0xc20
[T15862] __sock_sendmsg+0xe0/0x1a0
[T15862] ____sys_sendmsg+0x6c0/0x840
[T15862] ___sys_sendmsg+0x1ac/0x1f0
[T15862] __sys_sendmsg+0x110/0x1d0
[T15862] __arm64_sys_sendmsg+0x74/0xb0
[T15862] invoke_syscall+0x88/0x2e0
[T15862] el0_svc_common.constprop.0+0xe4/0x2a0
[T15862] do_el0_svc+0x44/0x60
[T15862] el0_svc+0x50/0x184
[T15862] el0t_64_sync_handler+0x120/0x12c
[T15862] el0t_64_sync+0x190/0x194
[T15862]
[T15862] Freed by task 6192:
[T15862] kasan_save_stack+0x3c/0x70
[T15862] kasan_save_track+0x20/0x3c
[T15862] kasan_save_free_info+0x4c/0x80
[T15862] poison_slab_object+0x110/0x160
[T15862] __kasan_slab_free+0x3c/0x74
[T15862] kfree+0x134/0x3c0
[T15862] taprio_free_sched_cb+0x18c/0x220
[T15862] rcu_core+0x920/0x1b7c
[T15862] rcu_core_si+0x10/0x1c
[T15862] handle_softirqs+0x2e8/0xd64
[T15862] __do_softirq+0x14/0x20 |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: SCO: Fix UAF on sco_sock_timeout
conn->sk maybe have been unlinked/freed while waiting for sco_conn_lock
so this checks if the conn->sk is still valid by checking if it part of
sco_sk_list. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: ISO: Fix UAF on iso_sock_timeout
conn->sk maybe have been unlinked/freed while waiting for iso_conn_lock
so this checks if the conn->sk is still valid by checking if it part of
iso_sk_list. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd: Guard against bad data for ATIF ACPI method
If a BIOS provides bad data in response to an ATIF method call
this causes a NULL pointer dereference in the caller.
```
? show_regs (arch/x86/kernel/dumpstack.c:478 (discriminator 1))
? __die (arch/x86/kernel/dumpstack.c:423 arch/x86/kernel/dumpstack.c:434)
? page_fault_oops (arch/x86/mm/fault.c:544 (discriminator 2) arch/x86/mm/fault.c:705 (discriminator 2))
? do_user_addr_fault (arch/x86/mm/fault.c:440 (discriminator 1) arch/x86/mm/fault.c:1232 (discriminator 1))
? acpi_ut_update_object_reference (drivers/acpi/acpica/utdelete.c:642)
? exc_page_fault (arch/x86/mm/fault.c:1542)
? asm_exc_page_fault (./arch/x86/include/asm/idtentry.h:623)
? amdgpu_atif_query_backlight_caps.constprop.0 (drivers/gpu/drm/amd/amdgpu/amdgpu_acpi.c:387 (discriminator 2)) amdgpu
? amdgpu_atif_query_backlight_caps.constprop.0 (drivers/gpu/drm/amd/amdgpu/amdgpu_acpi.c:386 (discriminator 1)) amdgpu
```
It has been encountered on at least one system, so guard for it.
(cherry picked from commit c9b7c809b89f24e9372a4e7f02d64c950b07fdee) |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: nSVM: Ignore nCR3[4:0] when loading PDPTEs from memory
Ignore nCR3[4:0] when loading PDPTEs from memory for nested SVM, as bits
4:0 of CR3 are ignored when PAE paging is used, and thus VMRUN doesn't
enforce 32-byte alignment of nCR3.
In the absolute worst case scenario, failure to ignore bits 4:0 can result
in an out-of-bounds read, e.g. if the target page is at the end of a
memslot, and the VMM isn't using guard pages.
Per the APM:
The CR3 register points to the base address of the page-directory-pointer
table. The page-directory-pointer table is aligned on a 32-byte boundary,
with the low 5 address bits 4:0 assumed to be 0.
And the SDM's much more explicit:
4:0 Ignored
Note, KVM gets this right when loading PDPTRs, it's only the nSVM flow
that is broken. |
| In the Linux kernel, the following vulnerability has been resolved:
xfrm: fix one more kernel-infoleak in algo dumping
During fuzz testing, the following issue was discovered:
BUG: KMSAN: kernel-infoleak in _copy_to_iter+0x598/0x2a30
_copy_to_iter+0x598/0x2a30
__skb_datagram_iter+0x168/0x1060
skb_copy_datagram_iter+0x5b/0x220
netlink_recvmsg+0x362/0x1700
sock_recvmsg+0x2dc/0x390
__sys_recvfrom+0x381/0x6d0
__x64_sys_recvfrom+0x130/0x200
x64_sys_call+0x32c8/0x3cc0
do_syscall_64+0xd8/0x1c0
entry_SYSCALL_64_after_hwframe+0x79/0x81
Uninit was stored to memory at:
copy_to_user_state_extra+0xcc1/0x1e00
dump_one_state+0x28c/0x5f0
xfrm_state_walk+0x548/0x11e0
xfrm_dump_sa+0x1e0/0x840
netlink_dump+0x943/0x1c40
__netlink_dump_start+0x746/0xdb0
xfrm_user_rcv_msg+0x429/0xc00
netlink_rcv_skb+0x613/0x780
xfrm_netlink_rcv+0x77/0xc0
netlink_unicast+0xe90/0x1280
netlink_sendmsg+0x126d/0x1490
__sock_sendmsg+0x332/0x3d0
____sys_sendmsg+0x863/0xc30
___sys_sendmsg+0x285/0x3e0
__x64_sys_sendmsg+0x2d6/0x560
x64_sys_call+0x1316/0x3cc0
do_syscall_64+0xd8/0x1c0
entry_SYSCALL_64_after_hwframe+0x79/0x81
Uninit was created at:
__kmalloc+0x571/0xd30
attach_auth+0x106/0x3e0
xfrm_add_sa+0x2aa0/0x4230
xfrm_user_rcv_msg+0x832/0xc00
netlink_rcv_skb+0x613/0x780
xfrm_netlink_rcv+0x77/0xc0
netlink_unicast+0xe90/0x1280
netlink_sendmsg+0x126d/0x1490
__sock_sendmsg+0x332/0x3d0
____sys_sendmsg+0x863/0xc30
___sys_sendmsg+0x285/0x3e0
__x64_sys_sendmsg+0x2d6/0x560
x64_sys_call+0x1316/0x3cc0
do_syscall_64+0xd8/0x1c0
entry_SYSCALL_64_after_hwframe+0x79/0x81
Bytes 328-379 of 732 are uninitialized
Memory access of size 732 starts at ffff88800e18e000
Data copied to user address 00007ff30f48aff0
CPU: 2 PID: 18167 Comm: syz-executor.0 Not tainted 6.8.11 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
Fixes copying of xfrm algorithms where some random
data of the structure fields can end up in userspace.
Padding in structures may be filled with random (possibly sensitve)
data and should never be given directly to user-space.
A similar issue was resolved in the commit
8222d5910dae ("xfrm: Zero padding when dumping algos and encap")
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/vt-d: Fix incorrect pci_for_each_dma_alias() for non-PCI devices
Previously, the domain_context_clear() function incorrectly called
pci_for_each_dma_alias() to set up context entries for non-PCI devices.
This could lead to kernel hangs or other unexpected behavior.
Add a check to only call pci_for_each_dma_alias() for PCI devices. For
non-PCI devices, domain_context_clear_one() is called directly. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: probes: Remove broken LDR (literal) uprobe support
The simulate_ldr_literal() and simulate_ldrsw_literal() functions are
unsafe to use for uprobes. Both functions were originally written for
use with kprobes, and access memory with plain C accesses. When uprobes
was added, these were reused unmodified even though they cannot safely
access user memory.
There are three key problems:
1) The plain C accesses do not have corresponding extable entries, and
thus if they encounter a fault the kernel will treat these as
unintentional accesses to user memory, resulting in a BUG() which
will kill the kernel thread, and likely lead to further issues (e.g.
lockup or panic()).
2) The plain C accesses are subject to HW PAN and SW PAN, and so when
either is in use, any attempt to simulate an access to user memory
will fault. Thus neither simulate_ldr_literal() nor
simulate_ldrsw_literal() can do anything useful when simulating a
user instruction on any system with HW PAN or SW PAN.
3) The plain C accesses are privileged, as they run in kernel context,
and in practice can access a small range of kernel virtual addresses.
The instructions they simulate have a range of +/-1MiB, and since the
simulated instructions must itself be a user instructions in the
TTBR0 address range, these can address the final 1MiB of the TTBR1
acddress range by wrapping downwards from an address in the first
1MiB of the TTBR0 address range.
In contemporary kernels the last 8MiB of TTBR1 address range is
reserved, and accesses to this will always fault, meaning this is no
worse than (1).
Historically, it was theoretically possible for the linear map or
vmemmap to spill into the final 8MiB of the TTBR1 address range, but
in practice this is extremely unlikely to occur as this would
require either:
* Having enough physical memory to fill the entire linear map all the
way to the final 1MiB of the TTBR1 address range.
* Getting unlucky with KASLR randomization of the linear map such
that the populated region happens to overlap with the last 1MiB of
the TTBR address range.
... and in either case if we were to spill into the final page there
would be larger problems as the final page would alias with error
pointers.
Practically speaking, (1) and (2) are the big issues. Given there have
been no reports of problems since the broken code was introduced, it
appears that no-one is relying on probing these instructions with
uprobes.
Avoid these issues by not allowing uprobes on LDR (literal) and LDRSW
(literal), limiting the use of simulate_ldr_literal() and
simulate_ldrsw_literal() to kprobes. Attempts to place uprobes on LDR
(literal) and LDRSW (literal) will be rejected as
arm_probe_decode_insn() will return INSN_REJECTED. In future we can
consider introducing working uprobes support for these instructions, but
this will require more significant work. |
| In the Linux kernel, the following vulnerability has been resolved:
thermal: intel: int340x: processor: Fix warning during module unload
The processor_thermal driver uses pcim_device_enable() to enable a PCI
device, which means the device will be automatically disabled on driver
detach. Thus there is no need to call pci_disable_device() again on it.
With recent PCI device resource management improvements, e.g. commit
f748a07a0b64 ("PCI: Remove legacy pcim_release()"), this problem is
exposed and triggers the warining below.
[ 224.010735] proc_thermal_pci 0000:00:04.0: disabling already-disabled device
[ 224.010747] WARNING: CPU: 8 PID: 4442 at drivers/pci/pci.c:2250 pci_disable_device+0xe5/0x100
...
[ 224.010844] Call Trace:
[ 224.010845] <TASK>
[ 224.010847] ? show_regs+0x6d/0x80
[ 224.010851] ? __warn+0x8c/0x140
[ 224.010854] ? pci_disable_device+0xe5/0x100
[ 224.010856] ? report_bug+0x1c9/0x1e0
[ 224.010859] ? handle_bug+0x46/0x80
[ 224.010862] ? exc_invalid_op+0x1d/0x80
[ 224.010863] ? asm_exc_invalid_op+0x1f/0x30
[ 224.010867] ? pci_disable_device+0xe5/0x100
[ 224.010869] ? pci_disable_device+0xe5/0x100
[ 224.010871] ? kfree+0x21a/0x2b0
[ 224.010873] pcim_disable_device+0x20/0x30
[ 224.010875] devm_action_release+0x16/0x20
[ 224.010878] release_nodes+0x47/0xc0
[ 224.010880] devres_release_all+0x9f/0xe0
[ 224.010883] device_unbind_cleanup+0x12/0x80
[ 224.010885] device_release_driver_internal+0x1ca/0x210
[ 224.010887] driver_detach+0x4e/0xa0
[ 224.010889] bus_remove_driver+0x6f/0xf0
[ 224.010890] driver_unregister+0x35/0x60
[ 224.010892] pci_unregister_driver+0x44/0x90
[ 224.010894] proc_thermal_pci_driver_exit+0x14/0x5f0 [processor_thermal_device_pci]
...
[ 224.010921] ---[ end trace 0000000000000000 ]---
Remove the excess pci_disable_device() calls.
[ rjw: Subject and changelog edits ] |
| In the Linux kernel, the following vulnerability has been resolved:
blk-rq-qos: fix crash on rq_qos_wait vs. rq_qos_wake_function race
We're seeing crashes from rq_qos_wake_function that look like this:
BUG: unable to handle page fault for address: ffffafe180a40084
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 100000067 P4D 100000067 PUD 10027c067 PMD 10115d067 PTE 0
Oops: Oops: 0002 [#1] PREEMPT SMP PTI
CPU: 17 UID: 0 PID: 0 Comm: swapper/17 Not tainted 6.12.0-rc3-00013-geca631b8fe80 #11
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
RIP: 0010:_raw_spin_lock_irqsave+0x1d/0x40
Code: 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa 0f 1f 44 00 00 41 54 9c 41 5c fa 65 ff 05 62 97 30 4c 31 c0 ba 01 00 00 00 <f0> 0f b1 17 75 0a 4c 89 e0 41 5c c3 cc cc cc cc 89 c6 e8 2c 0b 00
RSP: 0018:ffffafe180580ca0 EFLAGS: 00010046
RAX: 0000000000000000 RBX: ffffafe180a3f7a8 RCX: 0000000000000011
RDX: 0000000000000001 RSI: 0000000000000003 RDI: ffffafe180a40084
RBP: 0000000000000000 R08: 00000000001e7240 R09: 0000000000000011
R10: 0000000000000028 R11: 0000000000000888 R12: 0000000000000002
R13: ffffafe180a40084 R14: 0000000000000000 R15: 0000000000000003
FS: 0000000000000000(0000) GS:ffff9aaf1f280000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffafe180a40084 CR3: 000000010e428002 CR4: 0000000000770ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<IRQ>
try_to_wake_up+0x5a/0x6a0
rq_qos_wake_function+0x71/0x80
__wake_up_common+0x75/0xa0
__wake_up+0x36/0x60
scale_up.part.0+0x50/0x110
wb_timer_fn+0x227/0x450
...
So rq_qos_wake_function() calls wake_up_process(data->task), which calls
try_to_wake_up(), which faults in raw_spin_lock_irqsave(&p->pi_lock).
p comes from data->task, and data comes from the waitqueue entry, which
is stored on the waiter's stack in rq_qos_wait(). Analyzing the core
dump with drgn, I found that the waiter had already woken up and moved
on to a completely unrelated code path, clobbering what was previously
data->task. Meanwhile, the waker was passing the clobbered garbage in
data->task to wake_up_process(), leading to the crash.
What's happening is that in between rq_qos_wake_function() deleting the
waitqueue entry and calling wake_up_process(), rq_qos_wait() is finding
that it already got a token and returning. The race looks like this:
rq_qos_wait() rq_qos_wake_function()
==============================================================
prepare_to_wait_exclusive()
data->got_token = true;
list_del_init(&curr->entry);
if (data.got_token)
break;
finish_wait(&rqw->wait, &data.wq);
^- returns immediately because
list_empty_careful(&wq_entry->entry)
is true
... return, go do something else ...
wake_up_process(data->task)
(NO LONGER VALID!)-^
Normally, finish_wait() is supposed to synchronize against the waker.
But, as noted above, it is returning immediately because the waitqueue
entry has already been removed from the waitqueue.
The bug is that rq_qos_wake_function() is accessing the waitqueue entry
AFTER deleting it. Note that autoremove_wake_function() wakes the waiter
and THEN deletes the waitqueue entry, which is the proper order.
Fix it by swapping the order. We also need to use
list_del_init_careful() to match the list_empty_careful() in
finish_wait(). |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Call iso_exit() on module unload
If iso_init() has been called, iso_exit() must be called on module
unload. Without that, the struct proto that iso_init() registered with
proto_register() becomes invalid, which could cause unpredictable
problems later. In my case, with CONFIG_LIST_HARDENED and
CONFIG_BUG_ON_DATA_CORRUPTION enabled, loading the module again usually
triggers this BUG():
list_add corruption. next->prev should be prev (ffffffffb5355fd0),
but was 0000000000000068. (next=ffffffffc0a010d0).
------------[ cut here ]------------
kernel BUG at lib/list_debug.c:29!
Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI
CPU: 1 PID: 4159 Comm: modprobe Not tainted 6.10.11-4+bt2-ao-desktop #1
RIP: 0010:__list_add_valid_or_report+0x61/0xa0
...
__list_add_valid_or_report+0x61/0xa0
proto_register+0x299/0x320
hci_sock_init+0x16/0xc0 [bluetooth]
bt_init+0x68/0xd0 [bluetooth]
__pfx_bt_init+0x10/0x10 [bluetooth]
do_one_initcall+0x80/0x2f0
do_init_module+0x8b/0x230
__do_sys_init_module+0x15f/0x190
do_syscall_64+0x68/0x110
... |