| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Windows Management Services allows an authorized attacker to elevate privileges locally. |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Windows SMB Server allows an authorized attacker to elevate privileges over a network. |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Windows SMB Server allows an authorized attacker to elevate privileges over a network. |
| Heap-based buffer overflow in Windows NTFS allows an authorized attacker to execute code locally. |
| Use after free in Windows Management Services allows an authorized attacker to elevate privileges locally. |
| External control of file name or path in Windows NTLM allows an unauthorized attacker to perform spoofing over a network. |
| A vulnerability exists in an Orchestrator service that could allow an unauthenticated remote attacker to bypass multi-factor authentication requirements. Successful exploitation could allow an attacker to create an admin user account without the necessary multi-factor authentication, thereby compromising the integrity of secured access to the system. |
| In the Linux kernel, the following vulnerability has been resolved:
erspan: Initialize options_len before referencing options.
The struct ip_tunnel_info has a flexible array member named
options that is protected by a counted_by(options_len)
attribute.
The compiler will use this information to enforce runtime bounds
checking deployed by FORTIFY_SOURCE string helpers.
As laid out in the GCC documentation, the counter must be
initialized before the first reference to the flexible array
member.
After scanning through the files that use struct ip_tunnel_info
and also refer to options or options_len, it appears the normal
case is to use the ip_tunnel_info_opts_set() helper.
Said helper would initialize options_len properly before copying
data into options, however in the GRE ERSPAN code a partial
update is done, preventing the use of the helper function.
Before this change the handling of ERSPAN traffic in GRE tunnels
would cause a kernel panic when the kernel is compiled with
GCC 15+ and having FORTIFY_SOURCE configured:
memcpy: detected buffer overflow: 4 byte write of buffer size 0
Call Trace:
<IRQ>
__fortify_panic+0xd/0xf
erspan_rcv.cold+0x68/0x83
? ip_route_input_slow+0x816/0x9d0
gre_rcv+0x1b2/0x1c0
gre_rcv+0x8e/0x100
? raw_v4_input+0x2a0/0x2b0
ip_protocol_deliver_rcu+0x1ea/0x210
ip_local_deliver_finish+0x86/0x110
ip_local_deliver+0x65/0x110
? ip_rcv_finish_core+0xd6/0x360
ip_rcv+0x186/0x1a0
Reported-at: https://launchpad.net/bugs/2129580 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: Discard Beacon frames to non-broadcast address
Beacon frames are required to be sent to the broadcast address, see IEEE
Std 802.11-2020, 11.1.3.1 ("The Address 1 field of the Beacon .. frame
shall be set to the broadcast address"). A unicast Beacon frame might be
used as a targeted attack to get one of the associated STAs to do
something (e.g., using CSA to move it to another channel). As such, it
is better have strict filtering for this on the received side and
discard all Beacon frames that are sent to an unexpected address.
This is even more important for cases where beacon protection is used.
The current implementation in mac80211 is correctly discarding unicast
Beacon frames if the Protected Frame bit in the Frame Control field is
set to 0. However, if that bit is set to 1, the logic used for checking
for configured BIGTK(s) does not actually work. If the driver does not
have logic for dropping unicast Beacon frames with Protected Frame bit
1, these frames would be accepted in mac80211 processing as valid Beacon
frames even though they are not protected. This would allow beacon
protection to be bypassed. While the logic for checking beacon
protection could be extended to cover this corner case, a more generic
check for discard all Beacon frames based on A1=unicast address covers
this without needing additional changes.
Address all these issues by dropping received Beacon frames if they are
sent to a non-broadcast address. |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Do not register unsupported perf events
Synthetic events currently do not have a function to register perf events.
This leads to calling the tracepoint register functions with a NULL
function pointer which triggers:
------------[ cut here ]------------
WARNING: kernel/tracepoint.c:175 at tracepoint_add_func+0x357/0x370, CPU#2: perf/2272
Modules linked in: kvm_intel kvm irqbypass
CPU: 2 UID: 0 PID: 2272 Comm: perf Not tainted 6.18.0-ftest-11964-ge022764176fc-dirty #323 PREEMPTLAZY
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.17.0-debian-1.17.0-1 04/01/2014
RIP: 0010:tracepoint_add_func+0x357/0x370
Code: 28 9c e8 4c 0b f5 ff eb 0f 4c 89 f7 48 c7 c6 80 4d 28 9c e8 ab 89 f4 ff 31 c0 5b 41 5c 41 5d 41 5e 41 5f 5d c3 cc cc cc cc cc <0f> 0b 49 c7 c6 ea ff ff ff e9 ee fe ff ff 0f 0b e9 f9 fe ff ff 0f
RSP: 0018:ffffabc0c44d3c40 EFLAGS: 00010246
RAX: 0000000000000001 RBX: ffff9380aa9e4060 RCX: 0000000000000000
RDX: 000000000000000a RSI: ffffffff9e1d4a98 RDI: ffff937fcf5fd6c8
RBP: 0000000000000001 R08: 0000000000000007 R09: ffff937fcf5fc780
R10: 0000000000000003 R11: ffffffff9c193910 R12: 000000000000000a
R13: ffffffff9e1e5888 R14: 0000000000000000 R15: ffffabc0c44d3c78
FS: 00007f6202f5f340(0000) GS:ffff93819f00f000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055d3162281a8 CR3: 0000000106a56003 CR4: 0000000000172ef0
Call Trace:
<TASK>
tracepoint_probe_register+0x5d/0x90
synth_event_reg+0x3c/0x60
perf_trace_event_init+0x204/0x340
perf_trace_init+0x85/0xd0
perf_tp_event_init+0x2e/0x50
perf_try_init_event+0x6f/0x230
? perf_event_alloc+0x4bb/0xdc0
perf_event_alloc+0x65a/0xdc0
__se_sys_perf_event_open+0x290/0x9f0
do_syscall_64+0x93/0x7b0
? entry_SYSCALL_64_after_hwframe+0x76/0x7e
? trace_hardirqs_off+0x53/0xc0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Instead, have the code return -ENODEV, which doesn't warn and has perf
error out with:
# perf record -e synthetic:futex_wait
Error:
The sys_perf_event_open() syscall returned with 19 (No such device) for event (synthetic:futex_wait).
"dmesg | grep -i perf" may provide additional information.
Ideally perf should support synthetic events, but for now just fix the
warning. The support can come later. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm/a6xx: move preempt_prepare_postamble after error check
Move the call to preempt_prepare_postamble() after verifying that
preempt_postamble_ptr is valid. If preempt_postamble_ptr is NULL,
dereferencing it in preempt_prepare_postamble() would lead to a crash.
This change avoids calling the preparation function when the
postamble allocation has failed, preventing potential NULL pointer
dereference and ensuring proper error handling.
Patchwork: https://patchwork.freedesktop.org/patch/687659/ |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix string copying in parse_apply_sb_mount_options()
strscpy_pad() can't be used to copy a non-NUL-term string into a NUL-term
string of possibly bigger size. Commit 0efc5990bca5 ("string.h: Introduce
memtostr() and memtostr_pad()") provides additional information in that
regard. So if this happens, the following warning is observed:
strnlen: detected buffer overflow: 65 byte read of buffer size 64
WARNING: CPU: 0 PID: 28655 at lib/string_helpers.c:1032 __fortify_report+0x96/0xc0 lib/string_helpers.c:1032
Modules linked in:
CPU: 0 UID: 0 PID: 28655 Comm: syz-executor.3 Not tainted 6.12.54-syzkaller-00144-g5f0270f1ba00 #0
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
RIP: 0010:__fortify_report+0x96/0xc0 lib/string_helpers.c:1032
Call Trace:
<TASK>
__fortify_panic+0x1f/0x30 lib/string_helpers.c:1039
strnlen include/linux/fortify-string.h:235 [inline]
sized_strscpy include/linux/fortify-string.h:309 [inline]
parse_apply_sb_mount_options fs/ext4/super.c:2504 [inline]
__ext4_fill_super fs/ext4/super.c:5261 [inline]
ext4_fill_super+0x3c35/0xad00 fs/ext4/super.c:5706
get_tree_bdev_flags+0x387/0x620 fs/super.c:1636
vfs_get_tree+0x93/0x380 fs/super.c:1814
do_new_mount fs/namespace.c:3553 [inline]
path_mount+0x6ae/0x1f70 fs/namespace.c:3880
do_mount fs/namespace.c:3893 [inline]
__do_sys_mount fs/namespace.c:4103 [inline]
__se_sys_mount fs/namespace.c:4080 [inline]
__x64_sys_mount+0x280/0x300 fs/namespace.c:4080
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0x64/0x140 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Since userspace is expected to provide s_mount_opts field to be at most 63
characters long with the ending byte being NUL-term, use a 64-byte buffer
which matches the size of s_mount_opts, so that strscpy_pad() does its job
properly. Return with error if the user still managed to provide a
non-NUL-term string here.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
| In the Linux kernel, the following vulnerability has been resolved:
parisc: Do not reprogram affinitiy on ASP chip
The ASP chip is a very old variant of the GSP chip and is used e.g. in
HP 730 workstations. When trying to reprogram the affinity it will crash
with a HPMC as the relevant registers don't seem to be at the usual
location. Let's avoid the crash by checking the sversion. Also note,
that reprogramming isn't necessary either, as the HP730 is a just a
single-CPU machine. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/kexec: Enable SMT before waking offline CPUs
If SMT is disabled or a partial SMT state is enabled, when a new kernel
image is loaded for kexec, on reboot the following warning is observed:
kexec: Waking offline cpu 228.
WARNING: CPU: 0 PID: 9062 at arch/powerpc/kexec/core_64.c:223 kexec_prepare_cpus+0x1b0/0x1bc
[snip]
NIP kexec_prepare_cpus+0x1b0/0x1bc
LR kexec_prepare_cpus+0x1a0/0x1bc
Call Trace:
kexec_prepare_cpus+0x1a0/0x1bc (unreliable)
default_machine_kexec+0x160/0x19c
machine_kexec+0x80/0x88
kernel_kexec+0xd0/0x118
__do_sys_reboot+0x210/0x2c4
system_call_exception+0x124/0x320
system_call_vectored_common+0x15c/0x2ec
This occurs as add_cpu() fails due to cpu_bootable() returning false for
CPUs that fail the cpu_smt_thread_allowed() check or non primary
threads if SMT is disabled.
Fix the issue by enabling SMT and resetting the number of SMT threads to
the number of threads per core, before attempting to wake up all present
CPUs. |
| In the Linux kernel, the following vulnerability has been resolved:
ACPICA: Avoid walking the Namespace if start_node is NULL
Although commit 0c9992315e73 ("ACPICA: Avoid walking the ACPI Namespace
if it is not there") fixed the situation when both start_node and
acpi_gbl_root_node are NULL, the Linux kernel mainline now still crashed
on Honor Magicbook 14 Pro [1].
That happens due to the access to the member of parent_node in
acpi_ns_get_next_node(). The NULL pointer dereference will always
happen, no matter whether or not the start_node is equal to
ACPI_ROOT_OBJECT, so move the check of start_node being NULL
out of the if block.
Unfortunately, all the attempts to contact Honor have failed, they
refused to provide any technical support for Linux.
The bad DSDT table's dump could be found on GitHub [2].
DMI: HONOR FMB-P/FMB-P-PCB, BIOS 1.13 05/08/2025
[ rjw: Subject adjustment, changelog edits ] |
| In the Linux kernel, the following vulnerability has been resolved:
block: Remove queue freezing from several sysfs store callbacks
Freezing the request queue from inside sysfs store callbacks may cause a
deadlock in combination with the dm-multipath driver and the
queue_if_no_path option. Additionally, freezing the request queue slows
down system boot on systems where sysfs attributes are set synchronously.
Fix this by removing the blk_mq_freeze_queue() / blk_mq_unfreeze_queue()
calls from the store callbacks that do not strictly need these callbacks.
Add the __data_racy annotation to request_queue.rq_timeout to suppress
KCSAN data race reports about the rq_timeout reads.
This patch may cause a small delay in applying the new settings.
For all the attributes affected by this patch, I/O will complete
correctly whether the old or the new value of the attribute is used.
This patch affects the following sysfs attributes:
* io_poll_delay
* io_timeout
* nomerges
* read_ahead_kb
* rq_affinity
Here is an example of a deadlock triggered by running test srp/002
if this patch is not applied:
task:multipathd
Call Trace:
<TASK>
__schedule+0x8c1/0x1bf0
schedule+0xdd/0x270
schedule_preempt_disabled+0x1c/0x30
__mutex_lock+0xb89/0x1650
mutex_lock_nested+0x1f/0x30
dm_table_set_restrictions+0x823/0xdf0
__bind+0x166/0x590
dm_swap_table+0x2a7/0x490
do_resume+0x1b1/0x610
dev_suspend+0x55/0x1a0
ctl_ioctl+0x3a5/0x7e0
dm_ctl_ioctl+0x12/0x20
__x64_sys_ioctl+0x127/0x1a0
x64_sys_call+0xe2b/0x17d0
do_syscall_64+0x96/0x3a0
entry_SYSCALL_64_after_hwframe+0x4b/0x53
</TASK>
task:(udev-worker)
Call Trace:
<TASK>
__schedule+0x8c1/0x1bf0
schedule+0xdd/0x270
blk_mq_freeze_queue_wait+0xf2/0x140
blk_mq_freeze_queue_nomemsave+0x23/0x30
queue_ra_store+0x14e/0x290
queue_attr_store+0x23e/0x2c0
sysfs_kf_write+0xde/0x140
kernfs_fop_write_iter+0x3b2/0x630
vfs_write+0x4fd/0x1390
ksys_write+0xfd/0x230
__x64_sys_write+0x76/0xc0
x64_sys_call+0x276/0x17d0
do_syscall_64+0x96/0x3a0
entry_SYSCALL_64_after_hwframe+0x4b/0x53
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
via_wdt: fix critical boot hang due to unnamed resource allocation
The VIA watchdog driver uses allocate_resource() to reserve a MMIO
region for the watchdog control register. However, the allocated
resource was not given a name, which causes the kernel resource tree
to contain an entry marked as "<BAD>" under /proc/iomem on x86
platforms.
During boot, this unnamed resource can lead to a critical hang because
subsequent resource lookups and conflict checks fail to handle the
invalid entry properly. |
| Social-Share-Buttons 2.2.3 contains a critical SQL injection vulnerability in the project_id parameter that allows attackers to manipulate database queries. Attackers can exploit this vulnerability by sending crafted POST requests with malicious SQL payloads to retrieve and potentially steal entire database contents. |
| Tftpd32 SE 4.60 contains an unquoted service path vulnerability that allows local attackers to potentially execute arbitrary code with elevated privileges. Attackers can exploit the unquoted path in the service configuration to inject malicious executables that will be run with system-level permissions. |
| Prowise Reflect version 1.0.9 contains a remote keystroke injection vulnerability that allows attackers to send keyboard events through an exposed WebSocket on port 8082. Attackers can craft malicious web pages to inject keystrokes, opening applications and typing arbitrary text by sending specific WebSocket messages. |