| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Improper system call parameter validation in the Trusted OS may allow a malicious driver to perform mapping or unmapping operations on a large number of pages, potentially resulting in kernel memory corruption. |
| Insufficient parameter sanitization in AMD Secure Processor (ASP) Boot Loader could allow an attacker with access to SPIROM upgrade to overwrite the memory, potentially resulting in arbitrary code execution. |
| A Time-of-check time-of-use (TOCTOU) race condition in the SMM communications buffer could allow a privileged attacker to bypass input validation and perform an out of bounds read or write, potentially resulting in loss of confidentiality, integrity, or availability. |
| A buffer overflow in the AMD Secure Processor (ASP) bootloader could allow an attacker to overwrite memory, potentially resulting in privilege escalation and arbitrary code execution. |
| A DLL hijacking vulnerability in the AMD Software Installer could allow an attacker to achieve privilege escalation potentially resulting in arbitrary code execution. |
| The integer overflow vulnerability within AMD Graphics driver could allow an attacker to bypass size checks potentially resulting in a denial of service |
| Improper input validation in AMD Graphics Driver could allow an attacker to supply a specially crafted pointer, potentially leading to arbitrary code execution. |
| Improper handling of parameters in the AMD Secure Processor (ASP) could allow a privileged attacker to pass an arbitrary memory value to functions in the trusted execution environment resulting in arbitrary code execution |
| Integer Overflow within atihdwt6.sys can allow a local attacker to cause out of bound read/write potentially leading to loss of confidentiality, integrity and availability |
| A Time-of-check time-of-use (TOCTOU) race condition in the AMD Secure Processor (ASP) could allow an attacker to modify External Global Memory Interconnect Trusted Agent (XGMI TA) commands as they are processed potentially resulting in loss of confidentiality, integrity, or availability. |
| A Time-of-check time-of-use (TOCTOU) race condition in the AMD Secure Processor (ASP) could allow an attacker to corrupt memory resulting in loss of integrity, confidentiality, or availability. |
| A DLL hijacking vulnerability in Vivado could allow a local attacker to achieve privilege escalation, potentially resulting in arbitrary code execution. |
| No description is available for this CVE. |
| Emmett is a framework designed to simplify your development process. Prior to 1.3.11, the cookies property in mmett_core.http.wrappers.Request does not handle CookieError exceptions when parsing malformed Cookie headers. This allows unauthenticated attackers to trigger HTTP 500 errors and cause denial of service. This vulnerability is fixed in 1.3.11. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu: disable SVA when CONFIG_X86 is set
Patch series "Fix stale IOTLB entries for kernel address space", v7.
This proposes a fix for a security vulnerability related to IOMMU Shared
Virtual Addressing (SVA). In an SVA context, an IOMMU can cache kernel
page table entries. When a kernel page table page is freed and
reallocated for another purpose, the IOMMU might still hold stale,
incorrect entries. This can be exploited to cause a use-after-free or
write-after-free condition, potentially leading to privilege escalation or
data corruption.
This solution introduces a deferred freeing mechanism for kernel page
table pages, which provides a safe window to notify the IOMMU to
invalidate its caches before the page is reused.
This patch (of 8):
In the IOMMU Shared Virtual Addressing (SVA) context, the IOMMU hardware
shares and walks the CPU's page tables. The x86 architecture maps the
kernel's virtual address space into the upper portion of every process's
page table. Consequently, in an SVA context, the IOMMU hardware can walk
and cache kernel page table entries.
The Linux kernel currently lacks a notification mechanism for kernel page
table changes, specifically when page table pages are freed and reused.
The IOMMU driver is only notified of changes to user virtual address
mappings. This can cause the IOMMU's internal caches to retain stale
entries for kernel VA.
Use-After-Free (UAF) and Write-After-Free (WAF) conditions arise when
kernel page table pages are freed and later reallocated. The IOMMU could
misinterpret the new data as valid page table entries. The IOMMU might
then walk into attacker-controlled memory, leading to arbitrary physical
memory DMA access or privilege escalation. This is also a
Write-After-Free issue, as the IOMMU will potentially continue to write
Accessed and Dirty bits to the freed memory while attempting to walk the
stale page tables.
Currently, SVA contexts are unprivileged and cannot access kernel
mappings. However, the IOMMU will still walk kernel-only page tables all
the way down to the leaf entries, where it realizes the mapping is for the
kernel and errors out. This means the IOMMU still caches these
intermediate page table entries, making the described vulnerability a real
concern.
Disable SVA on x86 architecture until the IOMMU can receive notification
to flush the paging cache before freeing the CPU kernel page table pages. |
| In the Linux kernel, the following vulnerability has been resolved:
ublk: fix deadlock when reading partition table
When one process(such as udev) opens ublk block device (e.g., to read
the partition table via bdev_open()), a deadlock[1] can occur:
1. bdev_open() grabs disk->open_mutex
2. The process issues read I/O to ublk backend to read partition table
3. In __ublk_complete_rq(), blk_update_request() or blk_mq_end_request()
runs bio->bi_end_io() callbacks
4. If this triggers fput() on file descriptor of ublk block device, the
work may be deferred to current task's task work (see fput() implementation)
5. This eventually calls blkdev_release() from the same context
6. blkdev_release() tries to grab disk->open_mutex again
7. Deadlock: same task waiting for a mutex it already holds
The fix is to run blk_update_request() and blk_mq_end_request() with bottom
halves disabled. This forces blkdev_release() to run in kernel work-queue
context instead of current task work context, and allows ublk server to make
forward progress, and avoids the deadlock.
[axboe: rewrite comment in ublk] |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix racy bitfield write in btrfs_clear_space_info_full()
From the memory-barriers.txt document regarding memory barrier ordering
guarantees:
(*) These guarantees do not apply to bitfields, because compilers often
generate code to modify these using non-atomic read-modify-write
sequences. Do not attempt to use bitfields to synchronize parallel
algorithms.
(*) Even in cases where bitfields are protected by locks, all fields
in a given bitfield must be protected by one lock. If two fields
in a given bitfield are protected by different locks, the compiler's
non-atomic read-modify-write sequences can cause an update to one
field to corrupt the value of an adjacent field.
btrfs_space_info has a bitfield sharing an underlying word consisting of
the fields full, chunk_alloc, and flush:
struct btrfs_space_info {
struct btrfs_fs_info * fs_info; /* 0 8 */
struct btrfs_space_info * parent; /* 8 8 */
...
int clamp; /* 172 4 */
unsigned int full:1; /* 176: 0 4 */
unsigned int chunk_alloc:1; /* 176: 1 4 */
unsigned int flush:1; /* 176: 2 4 */
...
Therefore, to be safe from parallel read-modify-writes losing a write to
one of the bitfield members protected by a lock, all writes to all the
bitfields must use the lock. They almost universally do, except for
btrfs_clear_space_info_full() which iterates over the space_infos and
writes out found->full = 0 without a lock.
Imagine that we have one thread completing a transaction in which we
finished deleting a block_group and are thus calling
btrfs_clear_space_info_full() while simultaneously the data reclaim
ticket infrastructure is running do_async_reclaim_data_space():
T1 T2
btrfs_commit_transaction
btrfs_clear_space_info_full
data_sinfo->full = 0
READ: full:0, chunk_alloc:0, flush:1
do_async_reclaim_data_space(data_sinfo)
spin_lock(&space_info->lock);
if(list_empty(tickets))
space_info->flush = 0;
READ: full: 0, chunk_alloc:0, flush:1
MOD/WRITE: full: 0, chunk_alloc:0, flush:0
spin_unlock(&space_info->lock);
return;
MOD/WRITE: full:0, chunk_alloc:0, flush:1
and now data_sinfo->flush is 1 but the reclaim worker has exited. This
breaks the invariant that flush is 0 iff there is no work queued or
running. Once this invariant is violated, future allocations that go
into __reserve_bytes() will add tickets to space_info->tickets but will
see space_info->flush is set to 1 and not queue the work. After this,
they will block forever on the resulting ticket, as it is now impossible
to kick the worker again.
I also confirmed by looking at the assembly of the affected kernel that
it is doing RMW operations. For example, to set the flush (3rd) bit to 0,
the assembly is:
andb $0xfb,0x60(%rbx)
and similarly for setting the full (1st) bit to 0:
andb $0xfe,-0x20(%rax)
So I think this is really a bug on practical systems. I have observed
a number of systems in this exact state, but am currently unable to
reproduce it.
Rather than leaving this footgun lying around for the future, take
advantage of the fact that there is room in the struct anyway, and that
it is already quite large and simply change the three bitfield members to
bools. This avoids writes to space_info->full having any effect on
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
timers: Fix NULL function pointer race in timer_shutdown_sync()
There is a race condition between timer_shutdown_sync() and timer
expiration that can lead to hitting a WARN_ON in expire_timers().
The issue occurs when timer_shutdown_sync() clears the timer function
to NULL while the timer is still running on another CPU. The race
scenario looks like this:
CPU0 CPU1
<SOFTIRQ>
lock_timer_base()
expire_timers()
base->running_timer = timer;
unlock_timer_base()
[call_timer_fn enter]
mod_timer()
...
timer_shutdown_sync()
lock_timer_base()
// For now, will not detach the timer but only clear its function to NULL
if (base->running_timer != timer)
ret = detach_if_pending(timer, base, true);
if (shutdown)
timer->function = NULL;
unlock_timer_base()
[call_timer_fn exit]
lock_timer_base()
base->running_timer = NULL;
unlock_timer_base()
...
// Now timer is pending while its function set to NULL.
// next timer trigger
<SOFTIRQ>
expire_timers()
WARN_ON_ONCE(!fn) // hit
...
lock_timer_base()
// Now timer will detach
if (base->running_timer != timer)
ret = detach_if_pending(timer, base, true);
if (shutdown)
timer->function = NULL;
unlock_timer_base()
The problem is that timer_shutdown_sync() clears the timer function
regardless of whether the timer is currently running. This can leave a
pending timer with a NULL function pointer, which triggers the
WARN_ON_ONCE(!fn) check in expire_timers().
Fix this by only clearing the timer function when actually detaching the
timer. If the timer is running, leave the function pointer intact, which is
safe because the timer will be properly detached when it finishes running. |
| An high privileged remote attacker can inject arbitrary content into the custom CSS field on the affected devices due to improper neutralization of input during web page generation ('Cross-site Scripting'). |
| In the Linux kernel, the following vulnerability has been resolved:
hfsplus: fix slab-out-of-bounds read in hfsplus_uni2asc()
BUG: KASAN: slab-out-of-bounds in hfsplus_uni2asc+0xa71/0xb90 fs/hfsplus/unicode.c:186
Read of size 2 at addr ffff8880289ef218 by task syz.6.248/14290
CPU: 0 UID: 0 PID: 14290 Comm: syz.6.248 Not tainted 6.16.4 #1 PREEMPT(full)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1b0 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0xca/0x5f0 mm/kasan/report.c:482
kasan_report+0xca/0x100 mm/kasan/report.c:595
hfsplus_uni2asc+0xa71/0xb90 fs/hfsplus/unicode.c:186
hfsplus_listxattr+0x5b6/0xbd0 fs/hfsplus/xattr.c:738
vfs_listxattr+0xbe/0x140 fs/xattr.c:493
listxattr+0xee/0x190 fs/xattr.c:924
filename_listxattr fs/xattr.c:958 [inline]
path_listxattrat+0x143/0x360 fs/xattr.c:988
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xcb/0x4c0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7fe0e9fae16d
Code: 02 b8 ff ff ff ff c3 66 0f 1f 44 00 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007fe0eae67f98 EFLAGS: 00000246 ORIG_RAX: 00000000000000c3
RAX: ffffffffffffffda RBX: 00007fe0ea205fa0 RCX: 00007fe0e9fae16d
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000200000000000
RBP: 00007fe0ea0480f0 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 00007fe0ea206038 R14: 00007fe0ea205fa0 R15: 00007fe0eae48000
</TASK>
Allocated by task 14290:
kasan_save_stack+0x24/0x50 mm/kasan/common.c:47
kasan_save_track+0x14/0x30 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
__kasan_kmalloc+0xaa/0xb0 mm/kasan/common.c:394
kasan_kmalloc include/linux/kasan.h:260 [inline]
__do_kmalloc_node mm/slub.c:4333 [inline]
__kmalloc_noprof+0x219/0x540 mm/slub.c:4345
kmalloc_noprof include/linux/slab.h:909 [inline]
hfsplus_find_init+0x95/0x1f0 fs/hfsplus/bfind.c:21
hfsplus_listxattr+0x331/0xbd0 fs/hfsplus/xattr.c:697
vfs_listxattr+0xbe/0x140 fs/xattr.c:493
listxattr+0xee/0x190 fs/xattr.c:924
filename_listxattr fs/xattr.c:958 [inline]
path_listxattrat+0x143/0x360 fs/xattr.c:988
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xcb/0x4c0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
When hfsplus_uni2asc is called from hfsplus_listxattr,
it actually passes in a struct hfsplus_attr_unistr*.
The size of the corresponding structure is different from that of hfsplus_unistr,
so the previous fix (94458781aee6) is insufficient.
The pointer on the unicode buffer is still going beyond the allocated memory.
This patch introduces two warpper functions hfsplus_uni2asc_xattr_str and
hfsplus_uni2asc_str to process two unicode buffers,
struct hfsplus_attr_unistr* and struct hfsplus_unistr* respectively.
When ustrlen value is bigger than the allocated memory size,
the ustrlen value is limited to an safe size. |