| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: qcom: audioreach: fix potential null pointer dereference
It is possible that the topology parsing function
audioreach_widget_load_module_common() could return NULL or an error
pointer. Add missing NULL check so that we do not dereference it. |
| In the Linux kernel, the following vulnerability has been resolved:
net/9p: Fix buffer overflow in USB transport layer
A buffer overflow vulnerability exists in the USB 9pfs transport layer
where inconsistent size validation between packet header parsing and
actual data copying allows a malicious USB host to overflow heap buffers.
The issue occurs because:
- usb9pfs_rx_header() validates only the declared size in packet header
- usb9pfs_rx_complete() uses req->actual (actual received bytes) for
memcpy
This allows an attacker to craft packets with small declared size
(bypassing validation) but large actual payload (triggering overflow
in memcpy).
Add validation in usb9pfs_rx_complete() to ensure req->actual does not
exceed the buffer capacity before copying data. |
| In the Linux kernel, the following vulnerability has been resolved:
net: mscc: ocelot: Fix use-after-free caused by cyclic delayed work
The origin code calls cancel_delayed_work() in ocelot_stats_deinit()
to cancel the cyclic delayed work item ocelot->stats_work. However,
cancel_delayed_work() may fail to cancel the work item if it is already
executing. While destroy_workqueue() does wait for all pending work items
in the work queue to complete before destroying the work queue, it cannot
prevent the delayed work item from being rescheduled within the
ocelot_check_stats_work() function. This limitation exists because the
delayed work item is only enqueued into the work queue after its timer
expires. Before the timer expiration, destroy_workqueue() has no visibility
of this pending work item. Once the work queue appears empty,
destroy_workqueue() proceeds with destruction. When the timer eventually
expires, the delayed work item gets queued again, leading to the following
warning:
workqueue: cannot queue ocelot_check_stats_work on wq ocelot-switch-stats
WARNING: CPU: 2 PID: 0 at kernel/workqueue.c:2255 __queue_work+0x875/0xaf0
...
RIP: 0010:__queue_work+0x875/0xaf0
...
RSP: 0018:ffff88806d108b10 EFLAGS: 00010086
RAX: 0000000000000000 RBX: 0000000000000101 RCX: 0000000000000027
RDX: 0000000000000027 RSI: 0000000000000004 RDI: ffff88806d123e88
RBP: ffffffff813c3170 R08: 0000000000000000 R09: ffffed100da247d2
R10: ffffed100da247d1 R11: ffff88806d123e8b R12: ffff88800c00f000
R13: ffff88800d7285c0 R14: ffff88806d0a5580 R15: ffff88800d7285a0
FS: 0000000000000000(0000) GS:ffff8880e5725000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fe18e45ea10 CR3: 0000000005e6c000 CR4: 00000000000006f0
Call Trace:
<IRQ>
? kasan_report+0xc6/0xf0
? __pfx_delayed_work_timer_fn+0x10/0x10
? __pfx_delayed_work_timer_fn+0x10/0x10
call_timer_fn+0x25/0x1c0
__run_timer_base.part.0+0x3be/0x8c0
? __pfx_delayed_work_timer_fn+0x10/0x10
? rcu_sched_clock_irq+0xb06/0x27d0
? __pfx___run_timer_base.part.0+0x10/0x10
? try_to_wake_up+0xb15/0x1960
? _raw_spin_lock_irq+0x80/0xe0
? __pfx__raw_spin_lock_irq+0x10/0x10
tmigr_handle_remote_up+0x603/0x7e0
? __pfx_tmigr_handle_remote_up+0x10/0x10
? sched_balance_trigger+0x1c0/0x9f0
? sched_tick+0x221/0x5a0
? _raw_spin_lock_irq+0x80/0xe0
? __pfx__raw_spin_lock_irq+0x10/0x10
? tick_nohz_handler+0x339/0x440
? __pfx_tmigr_handle_remote_up+0x10/0x10
__walk_groups.isra.0+0x42/0x150
tmigr_handle_remote+0x1f4/0x2e0
? __pfx_tmigr_handle_remote+0x10/0x10
? ktime_get+0x60/0x140
? lapic_next_event+0x11/0x20
? clockevents_program_event+0x1d4/0x2a0
? hrtimer_interrupt+0x322/0x780
handle_softirqs+0x16a/0x550
irq_exit_rcu+0xaf/0xe0
sysvec_apic_timer_interrupt+0x70/0x80
</IRQ>
...
The following diagram reveals the cause of the above warning:
CPU 0 (remove) | CPU 1 (delayed work callback)
mscc_ocelot_remove() |
ocelot_deinit() | ocelot_check_stats_work()
ocelot_stats_deinit() |
cancel_delayed_work()| ...
| queue_delayed_work()
destroy_workqueue() | (wait a time)
| __queue_work() //UAF
The above scenario actually constitutes a UAF vulnerability.
The ocelot_stats_deinit() is only invoked when initialization
failure or resource destruction, so we must ensure that any
delayed work items cannot be rescheduled.
Replace cancel_delayed_work() with disable_delayed_work_sync()
to guarantee proper cancellation of the delayed work item and
ensure completion of any currently executing work before the
workqueue is deallocated.
A deadlock concern was considered: ocelot_stats_deinit() is called
in a process context and is not holding any locks that the delayed
work item might also need. Therefore, the use of the _sync() variant
is safe here.
This bug was identified through static analysis. To reproduce the
issue and validate the fix, I simulated ocelot-swit
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
thunderbolt: Fix use-after-free in tb_dp_dprx_work
The original code relies on cancel_delayed_work() in tb_dp_dprx_stop(),
which does not ensure that the delayed work item tunnel->dprx_work has
fully completed if it was already running. This leads to use-after-free
scenarios where tb_tunnel is deallocated by tb_tunnel_put(), while
tunnel->dprx_work remains active and attempts to dereference tb_tunnel
in tb_dp_dprx_work().
A typical race condition is illustrated below:
CPU 0 | CPU 1
tb_dp_tunnel_active() |
tb_deactivate_and_free_tunnel()| tb_dp_dprx_start()
tb_tunnel_deactivate() | queue_delayed_work()
tb_dp_activate() |
tb_dp_dprx_stop() | tb_dp_dprx_work() //delayed worker
cancel_delayed_work() |
tb_tunnel_put(tunnel); |
| tunnel = container_of(...); //UAF
| tunnel-> //UAF
Replacing cancel_delayed_work() with cancel_delayed_work_sync() is
not feasible as it would introduce a deadlock: both tb_dp_dprx_work()
and the cleanup path acquire tb->lock, and cancel_delayed_work_sync()
would wait indefinitely for the work item that cannot proceed.
Instead, implement proper reference counting:
- If cancel_delayed_work() returns true (work is pending), we release
the reference in the stop function.
- If it returns false (work is executing or already completed), the
reference is released in delayed work function itself.
This ensures the tb_tunnel remains valid during work item execution
while preventing memory leaks.
This bug was found by static analysis. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: mvsas: Fix use-after-free bugs in mvs_work_queue
During the detaching of Marvell's SAS/SATA controller, the original code
calls cancel_delayed_work() in mvs_free() to cancel the delayed work
item mwq->work_q. However, if mwq->work_q is already running, the
cancel_delayed_work() may fail to cancel it. This can lead to
use-after-free scenarios where mvs_free() frees the mvs_info while
mvs_work_queue() is still executing and attempts to access the
already-freed mvs_info.
A typical race condition is illustrated below:
CPU 0 (remove) | CPU 1 (delayed work callback)
mvs_pci_remove() |
mvs_free() | mvs_work_queue()
cancel_delayed_work() |
kfree(mvi) |
| mvi-> // UAF
Replace cancel_delayed_work() with cancel_delayed_work_sync() to ensure
that the delayed work item is properly canceled and any executing
delayed work item completes before the mvs_info is deallocated.
This bug was found by static analysis. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw89: fix use-after-free in rtw89_core_tx_kick_off_and_wait()
There is a bug observed when rtw89_core_tx_kick_off_and_wait() tries to
access already freed skb_data:
BUG: KFENCE: use-after-free write in rtw89_core_tx_kick_off_and_wait drivers/net/wireless/realtek/rtw89/core.c:1110
CPU: 6 UID: 0 PID: 41377 Comm: kworker/u64:24 Not tainted 6.17.0-rc1+ #1 PREEMPT(lazy)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS edk2-20250523-14.fc42 05/23/2025
Workqueue: events_unbound cfg80211_wiphy_work [cfg80211]
Use-after-free write at 0x0000000020309d9d (in kfence-#251):
rtw89_core_tx_kick_off_and_wait drivers/net/wireless/realtek/rtw89/core.c:1110
rtw89_core_scan_complete drivers/net/wireless/realtek/rtw89/core.c:5338
rtw89_hw_scan_complete_cb drivers/net/wireless/realtek/rtw89/fw.c:7979
rtw89_chanctx_proceed_cb drivers/net/wireless/realtek/rtw89/chan.c:3165
rtw89_chanctx_proceed drivers/net/wireless/realtek/rtw89/chan.h:141
rtw89_hw_scan_complete drivers/net/wireless/realtek/rtw89/fw.c:8012
rtw89_mac_c2h_scanofld_rsp drivers/net/wireless/realtek/rtw89/mac.c:5059
rtw89_fw_c2h_work drivers/net/wireless/realtek/rtw89/fw.c:6758
process_one_work kernel/workqueue.c:3241
worker_thread kernel/workqueue.c:3400
kthread kernel/kthread.c:463
ret_from_fork arch/x86/kernel/process.c:154
ret_from_fork_asm arch/x86/entry/entry_64.S:258
kfence-#251: 0x0000000056e2393d-0x000000009943cb62, size=232, cache=skbuff_head_cache
allocated by task 41377 on cpu 6 at 77869.159548s (0.009551s ago):
__alloc_skb net/core/skbuff.c:659
__netdev_alloc_skb net/core/skbuff.c:734
ieee80211_nullfunc_get net/mac80211/tx.c:5844
rtw89_core_send_nullfunc drivers/net/wireless/realtek/rtw89/core.c:3431
rtw89_core_scan_complete drivers/net/wireless/realtek/rtw89/core.c:5338
rtw89_hw_scan_complete_cb drivers/net/wireless/realtek/rtw89/fw.c:7979
rtw89_chanctx_proceed_cb drivers/net/wireless/realtek/rtw89/chan.c:3165
rtw89_chanctx_proceed drivers/net/wireless/realtek/rtw89/chan.c:3194
rtw89_hw_scan_complete drivers/net/wireless/realtek/rtw89/fw.c:8012
rtw89_mac_c2h_scanofld_rsp drivers/net/wireless/realtek/rtw89/mac.c:5059
rtw89_fw_c2h_work drivers/net/wireless/realtek/rtw89/fw.c:6758
process_one_work kernel/workqueue.c:3241
worker_thread kernel/workqueue.c:3400
kthread kernel/kthread.c:463
ret_from_fork arch/x86/kernel/process.c:154
ret_from_fork_asm arch/x86/entry/entry_64.S:258
freed by task 1045 on cpu 9 at 77869.168393s (0.001557s ago):
ieee80211_tx_status_skb net/mac80211/status.c:1117
rtw89_pci_release_txwd_skb drivers/net/wireless/realtek/rtw89/pci.c:564
rtw89_pci_release_tx_skbs.isra.0 drivers/net/wireless/realtek/rtw89/pci.c:651
rtw89_pci_release_tx drivers/net/wireless/realtek/rtw89/pci.c:676
rtw89_pci_napi_poll drivers/net/wireless/realtek/rtw89/pci.c:4238
__napi_poll net/core/dev.c:7495
net_rx_action net/core/dev.c:7557 net/core/dev.c:7684
handle_softirqs kernel/softirq.c:580
do_softirq.part.0 kernel/softirq.c:480
__local_bh_enable_ip kernel/softirq.c:407
rtw89_pci_interrupt_threadfn drivers/net/wireless/realtek/rtw89/pci.c:927
irq_thread_fn kernel/irq/manage.c:1133
irq_thread kernel/irq/manage.c:1257
kthread kernel/kthread.c:463
ret_from_fork arch/x86/kernel/process.c:154
ret_from_fork_asm arch/x86/entry/entry_64.S:258
It is a consequence of a race between the waiting and the signaling side
of the completion:
Waiting thread Completing thread
rtw89_core_tx_kick_off_and_wait()
rcu_assign_pointer(skb_data->wait, wait)
/* start waiting */
wait_for_completion_timeout()
rtw89_pci_tx_status()
rtw89_core_tx_wait_complete()
rcu_read_lock()
/* signals completion and
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
blk-mq: fix blk_mq_tags double free while nr_requests grown
In the case user trigger tags grow by queue sysfs attribute nr_requests,
hctx->sched_tags will be freed directly and replaced with a new
allocated tags, see blk_mq_tag_update_depth().
The problem is that hctx->sched_tags is from elevator->et->tags, while
et->tags is still the freed tags, hence later elevator exit will try to
free the tags again, causing kernel panic.
Fix this problem by replacing et->tags with new allocated tags as well.
Noted there are still some long term problems that will require some
refactor to be fixed thoroughly[1].
[1] https://lore.kernel.org/all/20250815080216.410665-1-yukuai1@huaweicloud.com/ |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: fix race condition to UAF in snd_usbmidi_free
The previous commit 0718a78f6a9f ("ALSA: usb-audio: Kill timer properly at
removal") patched a UAF issue caused by the error timer.
However, because the error timer kill added in this patch occurs after the
endpoint delete, a race condition to UAF still occurs, albeit rarely.
Additionally, since kill-cleanup for urb is also missing, freed memory can
be accessed in interrupt context related to urb, which can cause UAF.
Therefore, to prevent this, error timer and urb must be killed before
freeing the heap memory. |
| In the Linux kernel, the following vulnerability has been resolved:
media: b2c2: Fix use-after-free causing by irq_check_work in flexcop_pci_remove
The original code uses cancel_delayed_work() in flexcop_pci_remove(), which
does not guarantee that the delayed work item irq_check_work has fully
completed if it was already running. This leads to use-after-free scenarios
where flexcop_pci_remove() may free the flexcop_device while irq_check_work
is still active and attempts to dereference the device.
A typical race condition is illustrated below:
CPU 0 (remove) | CPU 1 (delayed work callback)
flexcop_pci_remove() | flexcop_pci_irq_check_work()
cancel_delayed_work() |
flexcop_device_kfree(fc_pci->fc_dev) |
| fc = fc_pci->fc_dev; // UAF
This is confirmed by a KASAN report:
==================================================================
BUG: KASAN: slab-use-after-free in __run_timer_base.part.0+0x7d7/0x8c0
Write of size 8 at addr ffff8880093aa8c8 by task bash/135
...
Call Trace:
<IRQ>
dump_stack_lvl+0x55/0x70
print_report+0xcf/0x610
? __run_timer_base.part.0+0x7d7/0x8c0
kasan_report+0xb8/0xf0
? __run_timer_base.part.0+0x7d7/0x8c0
__run_timer_base.part.0+0x7d7/0x8c0
? __pfx___run_timer_base.part.0+0x10/0x10
? __pfx_read_tsc+0x10/0x10
? ktime_get+0x60/0x140
? lapic_next_event+0x11/0x20
? clockevents_program_event+0x1d4/0x2a0
run_timer_softirq+0xd1/0x190
handle_softirqs+0x16a/0x550
irq_exit_rcu+0xaf/0xe0
sysvec_apic_timer_interrupt+0x70/0x80
</IRQ>
...
Allocated by task 1:
kasan_save_stack+0x24/0x50
kasan_save_track+0x14/0x30
__kasan_kmalloc+0x7f/0x90
__kmalloc_noprof+0x1be/0x460
flexcop_device_kmalloc+0x54/0xe0
flexcop_pci_probe+0x1f/0x9d0
local_pci_probe+0xdc/0x190
pci_device_probe+0x2fe/0x470
really_probe+0x1ca/0x5c0
__driver_probe_device+0x248/0x310
driver_probe_device+0x44/0x120
__driver_attach+0xd2/0x310
bus_for_each_dev+0xed/0x170
bus_add_driver+0x208/0x500
driver_register+0x132/0x460
do_one_initcall+0x89/0x300
kernel_init_freeable+0x40d/0x720
kernel_init+0x1a/0x150
ret_from_fork+0x10c/0x1a0
ret_from_fork_asm+0x1a/0x30
Freed by task 135:
kasan_save_stack+0x24/0x50
kasan_save_track+0x14/0x30
kasan_save_free_info+0x3a/0x60
__kasan_slab_free+0x3f/0x50
kfree+0x137/0x370
flexcop_device_kfree+0x32/0x50
pci_device_remove+0xa6/0x1d0
device_release_driver_internal+0xf8/0x210
pci_stop_bus_device+0x105/0x150
pci_stop_and_remove_bus_device_locked+0x15/0x30
remove_store+0xcc/0xe0
kernfs_fop_write_iter+0x2c3/0x440
vfs_write+0x871/0xd70
ksys_write+0xee/0x1c0
do_syscall_64+0xac/0x280
entry_SYSCALL_64_after_hwframe+0x77/0x7f
...
Replace cancel_delayed_work() with cancel_delayed_work_sync() to ensure
that the delayed work item is properly canceled and any executing delayed
work has finished before the device memory is deallocated.
This bug was initially identified through static analysis. To reproduce
and test it, I simulated the B2C2 FlexCop PCI device in QEMU and introduced
artificial delays within the flexcop_pci_irq_check_work() function to
increase the likelihood of triggering the bug. |
| In the Linux kernel, the following vulnerability has been resolved:
media: i2c: tc358743: Fix use-after-free bugs caused by orphan timer in probe
The state->timer is a cyclic timer that schedules work_i2c_poll and
delayed_work_enable_hotplug, while rearming itself. Using timer_delete()
fails to guarantee the timer isn't still running when destroyed, similarly
cancel_delayed_work() cannot ensure delayed_work_enable_hotplug has
terminated if already executing. During probe failure after timer
initialization, these may continue running as orphans and reference the
already-freed tc358743_state object through tc358743_irq_poll_timer.
The following is the trace captured by KASAN.
BUG: KASAN: slab-use-after-free in __run_timer_base.part.0+0x7d7/0x8c0
Write of size 8 at addr ffff88800ded83c8 by task swapper/1/0
...
Call Trace:
<IRQ>
dump_stack_lvl+0x55/0x70
print_report+0xcf/0x610
? __pfx_sched_balance_find_src_group+0x10/0x10
? __run_timer_base.part.0+0x7d7/0x8c0
kasan_report+0xb8/0xf0
? __run_timer_base.part.0+0x7d7/0x8c0
__run_timer_base.part.0+0x7d7/0x8c0
? rcu_sched_clock_irq+0xb06/0x27d0
? __pfx___run_timer_base.part.0+0x10/0x10
? try_to_wake_up+0xb15/0x1960
? tmigr_update_events+0x280/0x740
? _raw_spin_lock_irq+0x80/0xe0
? __pfx__raw_spin_lock_irq+0x10/0x10
tmigr_handle_remote_up+0x603/0x7e0
? __pfx_tmigr_handle_remote_up+0x10/0x10
? sched_balance_trigger+0x98/0x9f0
? sched_tick+0x221/0x5a0
? _raw_spin_lock_irq+0x80/0xe0
? __pfx__raw_spin_lock_irq+0x10/0x10
? tick_nohz_handler+0x339/0x440
? __pfx_tmigr_handle_remote_up+0x10/0x10
__walk_groups.isra.0+0x42/0x150
tmigr_handle_remote+0x1f4/0x2e0
? __pfx_tmigr_handle_remote+0x10/0x10
? ktime_get+0x60/0x140
? lapic_next_event+0x11/0x20
? clockevents_program_event+0x1d4/0x2a0
? hrtimer_interrupt+0x322/0x780
handle_softirqs+0x16a/0x550
irq_exit_rcu+0xaf/0xe0
sysvec_apic_timer_interrupt+0x70/0x80
</IRQ>
...
Allocated by task 141:
kasan_save_stack+0x24/0x50
kasan_save_track+0x14/0x30
__kasan_kmalloc+0x7f/0x90
__kmalloc_node_track_caller_noprof+0x198/0x430
devm_kmalloc+0x7b/0x1e0
tc358743_probe+0xb7/0x610 i2c_device_probe+0x51d/0x880
really_probe+0x1ca/0x5c0
__driver_probe_device+0x248/0x310
driver_probe_device+0x44/0x120
__device_attach_driver+0x174/0x220
bus_for_each_drv+0x100/0x190
__device_attach+0x206/0x370
bus_probe_device+0x123/0x170
device_add+0xd25/0x1470
i2c_new_client_device+0x7a0/0xcd0
do_one_initcall+0x89/0x300
do_init_module+0x29d/0x7f0
load_module+0x4f48/0x69e0
init_module_from_file+0xe4/0x150
idempotent_init_module+0x320/0x670
__x64_sys_finit_module+0xbd/0x120
do_syscall_64+0xac/0x280
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Freed by task 141:
kasan_save_stack+0x24/0x50
kasan_save_track+0x14/0x30
kasan_save_free_info+0x3a/0x60
__kasan_slab_free+0x3f/0x50
kfree+0x137/0x370
release_nodes+0xa4/0x100
devres_release_group+0x1b2/0x380
i2c_device_probe+0x694/0x880
really_probe+0x1ca/0x5c0
__driver_probe_device+0x248/0x310
driver_probe_device+0x44/0x120
__device_attach_driver+0x174/0x220
bus_for_each_drv+0x100/0x190
__device_attach+0x206/0x370
bus_probe_device+0x123/0x170
device_add+0xd25/0x1470
i2c_new_client_device+0x7a0/0xcd0
do_one_initcall+0x89/0x300
do_init_module+0x29d/0x7f0
load_module+0x4f48/0x69e0
init_module_from_file+0xe4/0x150
idempotent_init_module+0x320/0x670
__x64_sys_finit_module+0xbd/0x120
do_syscall_64+0xac/0x280
entry_SYSCALL_64_after_hwframe+0x77/0x7f
...
Replace timer_delete() with timer_delete_sync() and cancel_delayed_work()
with cancel_delayed_work_sync() to ensure proper termination of timer and
work items before resource cleanup.
This bug was initially identified through static analysis. For reproduction
and testing, I created a functional emulation of the tc358743 device via a
kernel module and introduced faults through the debugfs interface. |
| In the Linux kernel, the following vulnerability has been resolved:
media: tuner: xc5000: Fix use-after-free in xc5000_release
The original code uses cancel_delayed_work() in xc5000_release(), which
does not guarantee that the delayed work item timer_sleep has fully
completed if it was already running. This leads to use-after-free scenarios
where xc5000_release() may free the xc5000_priv while timer_sleep is still
active and attempts to dereference the xc5000_priv.
A typical race condition is illustrated below:
CPU 0 (release thread) | CPU 1 (delayed work callback)
xc5000_release() | xc5000_do_timer_sleep()
cancel_delayed_work() |
hybrid_tuner_release_state(priv) |
kfree(priv) |
| priv = container_of() // UAF
Replace cancel_delayed_work() with cancel_delayed_work_sync() to ensure
that the timer_sleep is properly canceled before the xc5000_priv memory
is deallocated.
A deadlock concern was considered: xc5000_release() is called in a process
context and is not holding any locks that the timer_sleep work item might
also need. Therefore, the use of the _sync() variant is safe here.
This bug was initially identified through static analysis.
[hverkuil: fix typo in Subject: tunner -> tuner] |
| In the Linux kernel, the following vulnerability has been resolved:
media: rc: fix races with imon_disconnect()
Syzbot reports a KASAN issue as below:
BUG: KASAN: use-after-free in __create_pipe include/linux/usb.h:1945 [inline]
BUG: KASAN: use-after-free in send_packet+0xa2d/0xbc0 drivers/media/rc/imon.c:627
Read of size 4 at addr ffff8880256fb000 by task syz-executor314/4465
CPU: 2 PID: 4465 Comm: syz-executor314 Not tainted 6.0.0-rc1-syzkaller #0
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.14.0-2 04/01/2014
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
print_address_description mm/kasan/report.c:317 [inline]
print_report.cold+0x2ba/0x6e9 mm/kasan/report.c:433
kasan_report+0xb1/0x1e0 mm/kasan/report.c:495
__create_pipe include/linux/usb.h:1945 [inline]
send_packet+0xa2d/0xbc0 drivers/media/rc/imon.c:627
vfd_write+0x2d9/0x550 drivers/media/rc/imon.c:991
vfs_write+0x2d7/0xdd0 fs/read_write.c:576
ksys_write+0x127/0x250 fs/read_write.c:631
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
The iMON driver improperly releases the usb_device reference in
imon_disconnect without coordinating with active users of the
device.
Specifically, the fields usbdev_intf0 and usbdev_intf1 are not
protected by the users counter (ictx->users). During probe,
imon_init_intf0 or imon_init_intf1 increments the usb_device
reference count depending on the interface. However, during
disconnect, usb_put_dev is called unconditionally, regardless of
actual usage.
As a result, if vfd_write or other operations are still in
progress after disconnect, this can lead to a use-after-free of
the usb_device pointer.
Thread 1 vfd_write Thread 2 imon_disconnect
...
if
usb_put_dev(ictx->usbdev_intf0)
else
usb_put_dev(ictx->usbdev_intf1)
...
while
send_packet
if
pipe = usb_sndintpipe(
ictx->usbdev_intf0) UAF
else
pipe = usb_sndctrlpipe(
ictx->usbdev_intf0, 0) UAF
Guard access to usbdev_intf0 and usbdev_intf1 after disconnect by
checking ictx->disconnected in all writer paths. Add early return
with -ENODEV in send_packet(), vfd_write(), lcd_write() and
display_open() if the device is no longer present.
Set and read ictx->disconnected under ictx->lock to ensure memory
synchronization. Acquire the lock in imon_disconnect() before setting
the flag to synchronize with any ongoing operations.
Ensure writers exit early and safely after disconnect before the USB
core proceeds with cleanup.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
| In the Linux kernel, the following vulnerability has been resolved:
mm: swap: check for stable address space before operating on the VMA
It is possible to hit a zero entry while traversing the vmas in unuse_mm()
called from swapoff path and accessing it causes the OOPS:
Unable to handle kernel NULL pointer dereference at virtual address
0000000000000446--> Loading the memory from offset 0x40 on the
XA_ZERO_ENTRY as address.
Mem abort info:
ESR = 0x0000000096000005
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x05: level 1 translation fault
The issue is manifested from the below race between the fork() on a
process and swapoff:
fork(dup_mmap()) swapoff(unuse_mm)
--------------- -----------------
1) Identical mtree is built using
__mt_dup().
2) copy_pte_range()-->
copy_nonpresent_pte():
The dst mm is added into the
mmlist to be visible to the
swapoff operation.
3) Fatal signal is sent to the parent
process(which is the current during the
fork) thus skip the duplication of the
vmas and mark the vma range with
XA_ZERO_ENTRY as a marker for this process
that helps during exit_mmap().
4) swapoff is tried on the
'mm' added to the 'mmlist' as
part of the 2.
5) unuse_mm(), that iterates
through the vma's of this 'mm'
will hit the non-NULL zero entry
and operating on this zero entry
as a vma is resulting into the
oops.
The proper fix would be around not exposing this partially-valid tree to
others when droping the mmap lock, which is being solved with [1]. A
simpler solution would be checking for MMF_UNSTABLE, as it is set if
mm_struct is not fully initialized in dup_mmap().
Thanks to Liam/Lorenzo/David for all the suggestions in fixing this
issue. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix NULL dereference in ath11k_qmi_m3_load()
If ab->fw.m3_data points to data, then fw pointer remains null.
Further, if m3_mem is not allocated, then fw is dereferenced to be
passed to ath11k_err function.
Replace fw->size by m3_len.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| The Commvault Command Center Innovation Release allows an unauthenticated actor to upload ZIP files that represent install packages that, when expanded by the target server, are vulnerable to path traversal vulnerability that can result in Remote Code Execution via malicious JSP.
This issue affects Command Center Innovation Release: 11.38.0 to 11.38.20. The vulnerability is fixed in 11.38.20 with SP38-CU20-433 and SP38-CU20-436 and also fixed in 11.38.25 with SP38-CU25-434 and SP38-CU25-438. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw89: 8852a: rfk: fix div 0 exception
The DPK is a kind of RF calibration whose algorithm is to fine tune
parameters and calibrate, and check the result. If the result isn't good
enough, it could adjust parameters and try again.
This issue is to read and show the result, but it could be a negative
calibration result that causes divisor 0 and core dump. So, fix it by
phy_div() that does division only if divisor isn't zero; otherwise,
zero is adopted.
divide error: 0000 [#1] PREEMPT SMP NOPTI
CPU: 1 PID: 728 Comm: wpa_supplicant Not tainted 5.10.114-16019-g462a1661811a #1 <HASH:d024 28>
RIP: 0010:rtw8852a_dpk+0x14ae/0x288f [rtw89_core]
RSP: 0018:ffffa9bb412a7520 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 00000000000180fc RDI: ffffa141d01023c0
RBP: ffffa9bb412a76a0 R08: 0000000000001319 R09: 00000000ffffff92
R10: ffffffffc0292de3 R11: ffffffffc00d2f51 R12: 0000000000000000
R13: ffffa141d01023c0 R14: ffffffffc0290250 R15: ffffa141d0102638
FS: 00007fa99f5c2740(0000) GS:ffffa142e5e80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000013e8e010 CR3: 0000000110d2c000 CR4: 0000000000750ee0
PKRU: 55555554
Call Trace:
rtw89_core_sta_add+0x95/0x9c [rtw89_core <HASH:d239 29>]
rtw89_ops_sta_state+0x5d/0x108 [rtw89_core <HASH:d239 29>]
drv_sta_state+0x115/0x66f [mac80211 <HASH:81fe 30>]
sta_info_insert_rcu+0x45c/0x713 [mac80211 <HASH:81fe 30>]
sta_info_insert+0xf/0x1b [mac80211 <HASH:81fe 30>]
ieee80211_prep_connection+0x9d6/0xb0c [mac80211 <HASH:81fe 30>]
ieee80211_mgd_auth+0x2aa/0x352 [mac80211 <HASH:81fe 30>]
cfg80211_mlme_auth+0x160/0x1f6 [cfg80211 <HASH:00cd 31>]
nl80211_authenticate+0x2e5/0x306 [cfg80211 <HASH:00cd 31>]
genl_rcv_msg+0x371/0x3a1
? nl80211_stop_sched_scan+0xe5/0xe5 [cfg80211 <HASH:00cd 31>]
? genl_rcv+0x36/0x36
netlink_rcv_skb+0x8a/0xf9
genl_rcv+0x28/0x36
netlink_unicast+0x27b/0x3a0
netlink_sendmsg+0x2aa/0x469
sock_sendmsg_nosec+0x49/0x4d
____sys_sendmsg+0xe5/0x213
__sys_sendmsg+0xec/0x157
? syscall_enter_from_user_mode+0xd7/0x116
do_syscall_64+0x43/0x55
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7fa99f6e689b |
| In the Linux kernel, the following vulnerability has been resolved:
rcutorture: Fix ksoftirqd boosting timing and iteration
The RCU priority boosting can fail in two situations:
1) If (nr_cpus= > maxcpus=), which means if the total number of CPUs
is higher than those brought online at boot, then torture_onoff() may
later bring up CPUs that weren't online on boot. Now since rcutorture
initialization only boosts the ksoftirqds of the CPUs that have been
set online on boot, the CPUs later set online by torture_onoff won't
benefit from the boost, making RCU priority boosting fail.
2) The ksoftirqd kthreads are boosted after the creation of
rcu_torture_boost() kthreads, which opens a window large enough for these
rcu_torture_boost() kthreads to wait (despite running at FIFO priority)
for ksoftirqds that are still running at SCHED_NORMAL priority.
The issues can trigger for example with:
./kvm.sh --configs TREE01 --kconfig "CONFIG_RCU_BOOST=y"
[ 34.968561] rcu-torture: !!!
[ 34.968627] ------------[ cut here ]------------
[ 35.014054] WARNING: CPU: 4 PID: 114 at kernel/rcu/rcutorture.c:1979 rcu_torture_stats_print+0x5ad/0x610
[ 35.052043] Modules linked in:
[ 35.069138] CPU: 4 PID: 114 Comm: rcu_torture_sta Not tainted 5.18.0-rc1 #1
[ 35.096424] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.14.0-0-g155821a-rebuilt.opensuse.org 04/01/2014
[ 35.154570] RIP: 0010:rcu_torture_stats_print+0x5ad/0x610
[ 35.198527] Code: 63 1b 02 00 74 02 0f 0b 48 83 3d 35 63 1b 02 00 74 02 0f 0b 48 83 3d 21 63 1b 02 00 74 02 0f 0b 48 83 3d 0d 63 1b 02 00 74 02 <0f> 0b 83 eb 01 0f 8e ba fc ff ff 0f 0b e9 b3 fc ff f82
[ 37.251049] RSP: 0000:ffffa92a0050bdf8 EFLAGS: 00010202
[ 37.277320] rcu: De-offloading 8
[ 37.290367] RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000001
[ 37.290387] RDX: 0000000000000000 RSI: 00000000ffffbfff RDI: 00000000ffffffff
[ 37.290398] RBP: 000000000000007b R08: 0000000000000000 R09: c0000000ffffbfff
[ 37.290407] R10: 000000000000002a R11: ffffa92a0050bc18 R12: ffffa92a0050be20
[ 37.290417] R13: ffffa92a0050be78 R14: 0000000000000000 R15: 000000000001bea0
[ 37.290427] FS: 0000000000000000(0000) GS:ffff96045eb00000(0000) knlGS:0000000000000000
[ 37.290448] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 37.290460] CR2: 0000000000000000 CR3: 000000001dc0c000 CR4: 00000000000006e0
[ 37.290470] Call Trace:
[ 37.295049] <TASK>
[ 37.295065] ? preempt_count_add+0x63/0x90
[ 37.295095] ? _raw_spin_lock_irqsave+0x12/0x40
[ 37.295125] ? rcu_torture_stats_print+0x610/0x610
[ 37.295143] rcu_torture_stats+0x29/0x70
[ 37.295160] kthread+0xe3/0x110
[ 37.295176] ? kthread_complete_and_exit+0x20/0x20
[ 37.295193] ret_from_fork+0x22/0x30
[ 37.295218] </TASK>
Fix this with boosting the ksoftirqds kthreads from the boosting
hotplug callback itself and before the boosting kthreads are created. |
| In the Linux kernel, the following vulnerability has been resolved:
media: tw686x: Fix memory leak in tw686x_video_init
video_device_alloc() allocates memory for vdev,
when video_register_device() fails, it doesn't release the memory and
leads to memory leak, call video_device_release() to fix this. |
| In the Linux kernel, the following vulnerability has been resolved:
net: hinic: avoid kernel hung in hinic_get_stats64()
When using hinic device as a bond slave device, and reading device stats
of master bond device, the kernel may hung.
The kernel panic calltrace as follows:
Kernel panic - not syncing: softlockup: hung tasks
Call trace:
native_queued_spin_lock_slowpath+0x1ec/0x31c
dev_get_stats+0x60/0xcc
dev_seq_printf_stats+0x40/0x120
dev_seq_show+0x1c/0x40
seq_read_iter+0x3c8/0x4dc
seq_read+0xe0/0x130
proc_reg_read+0xa8/0xe0
vfs_read+0xb0/0x1d4
ksys_read+0x70/0xfc
__arm64_sys_read+0x20/0x30
el0_svc_common+0x88/0x234
do_el0_svc+0x2c/0x90
el0_svc+0x1c/0x30
el0_sync_handler+0xa8/0xb0
el0_sync+0x148/0x180
And the calltrace of task that actually caused kernel hungs as follows:
__switch_to+124
__schedule+548
schedule+72
schedule_timeout+348
__down_common+188
__down+24
down+104
hinic_get_stats64+44 [hinic]
dev_get_stats+92
bond_get_stats+172 [bonding]
dev_get_stats+92
dev_seq_printf_stats+60
dev_seq_show+24
seq_read_iter+964
seq_read+220
proc_reg_read+164
vfs_read+172
ksys_read+108
__arm64_sys_read+28
el0_svc_common+132
do_el0_svc+40
el0_svc+24
el0_sync_handler+164
el0_sync+324
When getting device stats from bond, kernel will call bond_get_stats().
It first holds the spinlock bond->stats_lock, and then call
hinic_get_stats64() to collect hinic device's stats.
However, hinic_get_stats64() calls `down(&nic_dev->mgmt_lock)` to
protect its critical section, which may schedule current task out.
And if system is under high pressure, the task cannot be woken up
immediately, which eventually triggers kernel hung panic.
Since previous patch has replaced hinic_dev.tx_stats/rx_stats with local
variable in hinic_get_stats64(), there is nothing need to be protected
by lock, so just removing down()/up() is ok. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm/mdp5: Fix global state lock backoff
We need to grab the lock after the early return for !hwpipe case.
Otherwise, we could have hit contention yet still returned 0.
Fixes an issue that the new CONFIG_DRM_DEBUG_MODESET_LOCK stuff flagged
in CI:
WARNING: CPU: 0 PID: 282 at drivers/gpu/drm/drm_modeset_lock.c:296 drm_modeset_lock+0xf8/0x154
Modules linked in:
CPU: 0 PID: 282 Comm: kms_cursor_lega Tainted: G W 5.19.0-rc2-15930-g875cc8bc536a #1
Hardware name: Qualcomm Technologies, Inc. DB820c (DT)
pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : drm_modeset_lock+0xf8/0x154
lr : drm_atomic_get_private_obj_state+0x84/0x170
sp : ffff80000cfab6a0
x29: ffff80000cfab6a0 x28: 0000000000000000 x27: ffff000083bc4d00
x26: 0000000000000038 x25: 0000000000000000 x24: ffff80000957ca58
x23: 0000000000000000 x22: ffff000081ace080 x21: 0000000000000001
x20: ffff000081acec18 x19: ffff80000cfabb80 x18: 0000000000000038
x17: 0000000000000000 x16: 0000000000000000 x15: fffffffffffea0d0
x14: 0000000000000000 x13: 284e4f5f4e524157 x12: 5f534b434f4c5f47
x11: ffff80000a386aa8 x10: 0000000000000029 x9 : ffff80000cfab610
x8 : 0000000000000029 x7 : 0000000000000014 x6 : 0000000000000000
x5 : 0000000000000001 x4 : ffff8000081ad904 x3 : 0000000000000029
x2 : ffff0000801db4c0 x1 : ffff80000cfabb80 x0 : ffff000081aceb58
Call trace:
drm_modeset_lock+0xf8/0x154
drm_atomic_get_private_obj_state+0x84/0x170
mdp5_get_global_state+0x54/0x6c
mdp5_pipe_release+0x2c/0xd4
mdp5_plane_atomic_check+0x2ec/0x414
drm_atomic_helper_check_planes+0xd8/0x210
drm_atomic_helper_check+0x54/0xb0
...
---[ end trace 0000000000000000 ]---
drm_modeset_lock attempting to lock a contended lock without backoff:
drm_modeset_lock+0x148/0x154
mdp5_get_global_state+0x30/0x6c
mdp5_pipe_release+0x2c/0xd4
mdp5_plane_atomic_check+0x290/0x414
drm_atomic_helper_check_planes+0xd8/0x210
drm_atomic_helper_check+0x54/0xb0
drm_atomic_check_only+0x4b0/0x8f4
drm_atomic_commit+0x68/0xe0
Patchwork: https://patchwork.freedesktop.org/patch/492701/ |