| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
mt76: mt76x02u: fix possible memory leak in __mt76x02u_mcu_send_msg
Free the skb if mt76u_bulk_msg fails in __mt76x02u_mcu_send_msg routine. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: hisilicon/sec - don't sleep when in softirq
When kunpeng920 encryption driver is used to deencrypt and decrypt
packets during the softirq, it is not allowed to use mutex lock. The
kernel will report the following error:
BUG: scheduling while atomic: swapper/57/0/0x00000300
Call trace:
dump_backtrace+0x0/0x1e4
show_stack+0x20/0x2c
dump_stack+0xd8/0x140
__schedule_bug+0x68/0x80
__schedule+0x728/0x840
schedule+0x50/0xe0
schedule_preempt_disabled+0x18/0x24
__mutex_lock.constprop.0+0x594/0x5dc
__mutex_lock_slowpath+0x1c/0x30
mutex_lock+0x50/0x60
sec_request_init+0x8c/0x1a0 [hisi_sec2]
sec_process+0x28/0x1ac [hisi_sec2]
sec_skcipher_crypto+0xf4/0x1d4 [hisi_sec2]
sec_skcipher_encrypt+0x1c/0x30 [hisi_sec2]
crypto_skcipher_encrypt+0x2c/0x40
crypto_authenc_encrypt+0xc8/0xfc [authenc]
crypto_aead_encrypt+0x2c/0x40
echainiv_encrypt+0x144/0x1a0 [echainiv]
crypto_aead_encrypt+0x2c/0x40
esp_output_tail+0x348/0x5c0 [esp4]
esp_output+0x120/0x19c [esp4]
xfrm_output_one+0x25c/0x4d4
xfrm_output_resume+0x6c/0x1fc
xfrm_output+0xac/0x3c0
xfrm4_output+0x64/0x130
ip_build_and_send_pkt+0x158/0x20c
tcp_v4_send_synack+0xdc/0x1f0
tcp_conn_request+0x7d0/0x994
tcp_v4_conn_request+0x58/0x6c
tcp_v6_conn_request+0xf0/0x100
tcp_rcv_state_process+0x1cc/0xd60
tcp_v4_do_rcv+0x10c/0x250
tcp_v4_rcv+0xfc4/0x10a4
ip_protocol_deliver_rcu+0xf4/0x200
ip_local_deliver_finish+0x58/0x70
ip_local_deliver+0x68/0x120
ip_sublist_rcv_finish+0x70/0x94
ip_list_rcv_finish.constprop.0+0x17c/0x1d0
ip_sublist_rcv+0x40/0xb0
ip_list_rcv+0x140/0x1dc
__netif_receive_skb_list_core+0x154/0x28c
__netif_receive_skb_list+0x120/0x1a0
netif_receive_skb_list_internal+0xe4/0x1f0
napi_complete_done+0x70/0x1f0
gro_cell_poll+0x9c/0xb0
napi_poll+0xcc/0x264
net_rx_action+0xd4/0x21c
__do_softirq+0x130/0x358
irq_exit+0x11c/0x13c
__handle_domain_irq+0x88/0xf0
gic_handle_irq+0x78/0x2c0
el1_irq+0xb8/0x140
arch_cpu_idle+0x18/0x40
default_idle_call+0x5c/0x1c0
cpuidle_idle_call+0x174/0x1b0
do_idle+0xc8/0x160
cpu_startup_entry+0x30/0x11c
secondary_start_kernel+0x158/0x1e4
softirq: huh, entered softirq 3 NET_RX 0000000093774ee4 with
preempt_count 00000100, exited with fffffe00? |
| In the Linux kernel, the following vulnerability has been resolved:
kunit: executor: Fix a memory leak on failure in kunit_filter_tests
It's possible that memory allocation for 'filtered' will fail, but for the
copy of the suite to succeed. In this case, the copy could be leaked.
Properly free 'copy' in the error case for the allocation of 'filtered'
failing.
Note that there may also have been a similar issue in
kunit_filter_subsuites, before it was removed in "kunit: flatten
kunit_suite*** to kunit_suite** in .kunit_test_suites".
This was reported by clang-analyzer via the kernel test robot, here:
https://lore.kernel.org/all/c8073b8e-7b9e-0830-4177-87c12f16349c@intel.com/
And by smatch via Dan Carpenter and the kernel test robot:
https://lore.kernel.org/all/202207101328.ASjx88yj-lkp@intel.com/ |
| In the Linux kernel, the following vulnerability has been resolved:
perf/core: Handle buffer mapping fail correctly in perf_mmap()
After successful allocation of a buffer or a successful attachment to an
existing buffer perf_mmap() tries to map the buffer read only into the page
table. If that fails, the already set up page table entries are zapped, but
the other perf specific side effects of that failure are not handled. The
calling code just cleans up the VMA and does not invoke perf_mmap_close().
This leaks reference counts, corrupts user->vm accounting and also results
in an unbalanced invocation of event::event_mapped().
Cure this by moving the event::event_mapped() invocation before the
map_range() call so that on map_range() failure perf_mmap_close() can be
invoked without causing an unbalanced event::event_unmapped() call.
perf_mmap_close() undoes the reference counts and eventually frees buffers. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86/intel/pmt: fix a crashlog NULL pointer access
Usage of the intel_pmt_read() for binary sysfs, requires a pcidev. The
current use of the endpoint value is only valid for telemetry endpoint
usage.
Without the ep, the crashlog usage causes the following NULL pointer
exception:
BUG: kernel NULL pointer dereference, address: 0000000000000000
Oops: Oops: 0000 [#1] SMP NOPTI
RIP: 0010:intel_pmt_read+0x3b/0x70 [pmt_class]
Code:
Call Trace:
<TASK>
? sysfs_kf_bin_read+0xc0/0xe0
kernfs_fop_read_iter+0xac/0x1a0
vfs_read+0x26d/0x350
ksys_read+0x6b/0xe0
__x64_sys_read+0x1d/0x30
x64_sys_call+0x1bc8/0x1d70
do_syscall_64+0x6d/0x110
Augment struct intel_pmt_entry with a pointer to the pcidev to avoid
the NULL pointer exception. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: uvc: Initialize frame-based format color matching descriptor
Fix NULL pointer crash in uvcg_framebased_make due to uninitialized color
matching descriptor for frame-based format which was added in
commit f5e7bdd34aca ("usb: gadget: uvc: Allow creating new color matching
descriptors") that added handling for uncompressed and mjpeg format.
Crash is seen when userspace configuration (via configfs) does not
explicitly define the color matching descriptor. If color_matching is not
found, config_group_find_item() returns NULL. The code then jumps to
out_put_cm, where it calls config_item_put(color_matching);. If
color_matching is NULL, this will dereference a null pointer, leading to a
crash.
[ 2.746440] Unable to handle kernel NULL pointer dereference at virtual address 000000000000008c
[ 2.756273] Mem abort info:
[ 2.760080] ESR = 0x0000000096000005
[ 2.764872] EC = 0x25: DABT (current EL), IL = 32 bits
[ 2.771068] SET = 0, FnV = 0
[ 2.771069] EA = 0, S1PTW = 0
[ 2.771070] FSC = 0x05: level 1 translation fault
[ 2.771071] Data abort info:
[ 2.771072] ISV = 0, ISS = 0x00000005, ISS2 = 0x00000000
[ 2.771073] CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[ 2.771074] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[ 2.771075] user pgtable: 4k pages, 39-bit VAs, pgdp=00000000a3e59000
[ 2.771077] [000000000000008c] pgd=0000000000000000, p4d=0000000000000000, pud=0000000000000000
[ 2.771081] Internal error: Oops: 0000000096000005 [#1] PREEMPT SMP
[ 2.771084] Dumping ftrace buffer:
[ 2.771085] (ftrace buffer empty)
[ 2.771138] CPU: 7 PID: 486 Comm: ln Tainted: G W E 6.6.58-android15
[ 2.771139] Hardware name: Qualcomm Technologies, Inc. SunP QRD HDK (DT)
[ 2.771140] pstate: 61400005 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--)
[ 2.771141] pc : __uvcg_fill_strm+0x198/0x2cc
[ 2.771145] lr : __uvcg_iter_strm_cls+0xc8/0x17c
[ 2.771146] sp : ffffffc08140bbb0
[ 2.771146] x29: ffffffc08140bbb0 x28: ffffff803bc81380 x27: ffffff8023bbd250
[ 2.771147] x26: ffffff8023bbd250 x25: ffffff803c361348 x24: ffffff803d8e6768
[ 2.771148] x23: 0000000000000004 x22: 0000000000000003 x21: ffffffc08140bc48
[ 2.771149] x20: 0000000000000000 x19: ffffffc08140bc48 x18: ffffffe9f8cf4a00
[ 2.771150] x17: 000000001bf64ec3 x16: 000000001bf64ec3 x15: ffffff8023bbd250
[ 2.771151] x14: 000000000000000f x13: 004c4b40000f4240 x12: 000a2c2a00051615
[ 2.771152] x11: 000000000000004f x10: ffffffe9f76b40ec x9 : ffffffe9f7e389d0
[ 2.771153] x8 : ffffff803d0d31ce x7 : 000f4240000a2c2a x6 : 0005161500028b0a
[ 2.771154] x5 : ffffff803d0d31ce x4 : 0000000000000003 x3 : 0000000000000000
[ 2.771155] x2 : ffffffc08140bc50 x1 : ffffffc08140bc48 x0 : 0000000000000000
[ 2.771156] Call trace:
[ 2.771157] __uvcg_fill_strm+0x198/0x2cc
[ 2.771157] __uvcg_iter_strm_cls+0xc8/0x17c
[ 2.771158] uvcg_streaming_class_allow_link+0x240/0x290
[ 2.771159] configfs_symlink+0x1f8/0x630
[ 2.771161] vfs_symlink+0x114/0x1a0
[ 2.771163] do_symlinkat+0x94/0x28c
[ 2.771164] __arm64_sys_symlinkat+0x54/0x70
[ 2.771164] invoke_syscall+0x58/0x114
[ 2.771166] el0_svc_common+0x80/0xe0
[ 2.771168] do_el0_svc+0x1c/0x28
[ 2.771169] el0_svc+0x3c/0x70
[ 2.771172] el0t_64_sync_handler+0x68/0xbc
[ 2.771173] el0t_64_sync+0x1a8/0x1ac
Initialize color matching descriptor for frame-based format to prevent
NULL pointer crash by mirroring the handling done for uncompressed and
mjpeg formats. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: apple: validate feature-report field count to prevent NULL pointer dereference
A malicious HID device with quirk APPLE_MAGIC_BACKLIGHT can trigger a NULL
pointer dereference whilst the power feature-report is toggled and sent to
the device in apple_magic_backlight_report_set(). The power feature-report
is expected to have two data fields, but if the descriptor declares one
field then accessing field[1] and dereferencing it in
apple_magic_backlight_report_set() becomes invalid
since field[1] will be NULL.
An example of a minimal descriptor which can cause the crash is something
like the following where the report with ID 3 (power report) only
references a single 1-byte field. When hid core parses the descriptor it
will encounter the final feature tag, allocate a hid_report (all members
of field[] will be zeroed out), create field structure and populate it,
increasing the maxfield to 1. The subsequent field[1] access and
dereference causes the crash.
Usage Page (Vendor Defined 0xFF00)
Usage (0x0F)
Collection (Application)
Report ID (1)
Usage (0x01)
Logical Minimum (0)
Logical Maximum (255)
Report Size (8)
Report Count (1)
Feature (Data,Var,Abs)
Usage (0x02)
Logical Maximum (32767)
Report Size (16)
Report Count (1)
Feature (Data,Var,Abs)
Report ID (3)
Usage (0x03)
Logical Minimum (0)
Logical Maximum (1)
Report Size (8)
Report Count (1)
Feature (Data,Var,Abs)
End Collection
Here we see the KASAN splat when the kernel dereferences the
NULL pointer and crashes:
[ 15.164723] Oops: general protection fault, probably for non-canonical address 0xdffffc0000000006: 0000 [#1] SMP KASAN NOPTI
[ 15.165691] KASAN: null-ptr-deref in range [0x0000000000000030-0x0000000000000037]
[ 15.165691] CPU: 0 UID: 0 PID: 10 Comm: kworker/0:1 Not tainted 6.15.0 #31 PREEMPT(voluntary)
[ 15.165691] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
[ 15.165691] RIP: 0010:apple_magic_backlight_report_set+0xbf/0x210
[ 15.165691] Call Trace:
[ 15.165691] <TASK>
[ 15.165691] apple_probe+0x571/0xa20
[ 15.165691] hid_device_probe+0x2e2/0x6f0
[ 15.165691] really_probe+0x1ca/0x5c0
[ 15.165691] __driver_probe_device+0x24f/0x310
[ 15.165691] driver_probe_device+0x4a/0xd0
[ 15.165691] __device_attach_driver+0x169/0x220
[ 15.165691] bus_for_each_drv+0x118/0x1b0
[ 15.165691] __device_attach+0x1d5/0x380
[ 15.165691] device_initial_probe+0x12/0x20
[ 15.165691] bus_probe_device+0x13d/0x180
[ 15.165691] device_add+0xd87/0x1510
[...]
To fix this issue we should validate the number of fields that the
backlight and power reports have and if they do not have the required
number of fields then bail. |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: avoid ref leak in nfsd_open_local_fh()
If two calls to nfsd_open_local_fh() race and both successfully call
nfsd_file_acquire_local(), they will both get an extra reference to the
net to accompany the file reference stored in *pnf.
One of them will fail to store (using xchg()) the file reference in
*pnf and will drop that reference but WON'T drop the accompanying
reference to the net. This leak means that when the nfs server is shut
down it will hang in nfsd_shutdown_net() waiting for
&nn->nfsd_net_free_done.
This patch adds the missing nfsd_net_put(). |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: mqprio: fix stack out-of-bounds write in tc entry parsing
TCA_MQPRIO_TC_ENTRY_INDEX is validated using
NLA_POLICY_MAX(NLA_U32, TC_QOPT_MAX_QUEUE), which allows the value
TC_QOPT_MAX_QUEUE (16). This leads to a 4-byte out-of-bounds stack
write in the fp[] array, which only has room for 16 elements (0–15).
Fix this by changing the policy to allow only up to TC_QOPT_MAX_QUEUE - 1. |
| In the Linux kernel, the following vulnerability has been resolved:
eth: fbnic: unlink NAPIs from queues on error to open
CI hit a UaF in fbnic in the AF_XDP portion of the queues.py test.
The UaF is in the __sk_mark_napi_id_once() call in xsk_bind(),
NAPI has been freed. Looks like the device failed to open earlier,
and we lack clearing the NAPI pointer from the queue. |
| In the Linux kernel, the following vulnerability has been resolved:
sunrpc: fix client side handling of tls alerts
A security exploit was discovered in NFS over TLS in tls_alert_recv
due to its assumption that there is valid data in the msghdr's
iterator's kvec.
Instead, this patch proposes the rework how control messages are
setup and used by sock_recvmsg().
If no control message structure is setup, kTLS layer will read and
process TLS data record types. As soon as it encounters a TLS control
message, it would return an error. At that point, NFS can setup a kvec
backed control buffer and read in the control message such as a TLS
alert. Scott found that a msg iterator can advance the kvec pointer
as a part of the copy process thus we need to revert the iterator
before calling into the tls_alert_recv. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: cs42l43: Property entry should be a null-terminated array
The software node does not specify a count of property entries, so the
array must be null-terminated.
When unterminated, this can lead to a fault in the downstream cs35l56
amplifier driver, because the node parse walks off the end of the
array into unknown memory. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix inode use after free in ext4_end_io_rsv_work()
In ext4_io_end_defer_completion(), check if io_end->list_vec is empty to
avoid adding an io_end that requires no conversion to the
i_rsv_conversion_list, which in turn prevents starting an unnecessary
worker. An ext4_emergency_state() check is also added to avoid attempting
to abort the journal in an emergency state.
Additionally, ext4_put_io_end_defer() is refactored to call
ext4_io_end_defer_completion() directly instead of being open-coded.
This also prevents starting an unnecessary worker when EXT4_IO_END_FAILED
is set but data_err=abort is not enabled.
This ensures that the check in ext4_put_io_end_defer() is consistent with
the check in ext4_end_bio(). Otherwise, we might add an io_end to the
i_rsv_conversion_list and then call ext4_finish_bio(), after which the
inode could be freed before ext4_end_io_rsv_work() is called, triggering
a use-after-free issue. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/hns: Fix double destruction of rsv_qp
rsv_qp may be double destroyed in error flow, first in free_mr_init(),
and then in hns_roce_exit(). Fix it by moving the free_mr_init() call
into hns_roce_v2_init().
list_del corruption, ffff589732eb9b50->next is LIST_POISON1 (dead000000000100)
WARNING: CPU: 8 PID: 1047115 at lib/list_debug.c:53 __list_del_entry_valid+0x148/0x240
...
Call trace:
__list_del_entry_valid+0x148/0x240
hns_roce_qp_remove+0x4c/0x3f0 [hns_roce_hw_v2]
hns_roce_v2_destroy_qp_common+0x1dc/0x5f4 [hns_roce_hw_v2]
hns_roce_v2_destroy_qp+0x22c/0x46c [hns_roce_hw_v2]
free_mr_exit+0x6c/0x120 [hns_roce_hw_v2]
hns_roce_v2_exit+0x170/0x200 [hns_roce_hw_v2]
hns_roce_exit+0x118/0x350 [hns_roce_hw_v2]
__hns_roce_hw_v2_init_instance+0x1c8/0x304 [hns_roce_hw_v2]
hns_roce_hw_v2_reset_notify_init+0x170/0x21c [hns_roce_hw_v2]
hns_roce_hw_v2_reset_notify+0x6c/0x190 [hns_roce_hw_v2]
hclge_notify_roce_client+0x6c/0x160 [hclge]
hclge_reset_rebuild+0x150/0x5c0 [hclge]
hclge_reset+0x10c/0x140 [hclge]
hclge_reset_subtask+0x80/0x104 [hclge]
hclge_reset_service_task+0x168/0x3ac [hclge]
hclge_service_task+0x50/0x100 [hclge]
process_one_work+0x250/0x9a0
worker_thread+0x324/0x990
kthread+0x190/0x210
ret_from_fork+0x10/0x18 |
| In the Linux kernel, the following vulnerability has been resolved:
sunrpc: fix handling of server side tls alerts
Scott Mayhew discovered a security exploit in NFS over TLS in
tls_alert_recv() due to its assumption it can read data from
the msg iterator's kvec..
kTLS implementation splits TLS non-data record payload between
the control message buffer (which includes the type such as TLS
aler or TLS cipher change) and the rest of the payload (say TLS
alert's level/description) which goes into the msg payload buffer.
This patch proposes to rework how control messages are setup and
used by sock_recvmsg().
If no control message structure is setup, kTLS layer will read and
process TLS data record types. As soon as it encounters a TLS control
message, it would return an error. At that point, NFS can setup a
kvec backed msg buffer and read in the control message such as a
TLS alert. Msg iterator can advance the kvec pointer as a part of
the copy process thus we need to revert the iterator before calling
into the tls_alert_recv. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: Pass ab pointer directly to ath12k_dp_tx_get_encap_type()
In ath12k_dp_tx_get_encap_type(), the arvif parameter is only used to
retrieve the ab pointer. In vdev delete sequence the arvif->ar could
become NULL and that would trigger kernel panic.
Since the caller ath12k_dp_tx() already has a valid ab pointer, pass it
directly to avoid panic and unnecessary dereferencing.
PC points to "ath12k_dp_tx+0x228/0x988 [ath12k]"
LR points to "ath12k_dp_tx+0xc8/0x988 [ath12k]".
The Backtrace obtained is as follows:
ath12k_dp_tx+0x228/0x988 [ath12k]
ath12k_mac_tx_check_max_limit+0x608/0x920 [ath12k]
ieee80211_process_measurement_req+0x320/0x348 [mac80211]
ieee80211_tx_dequeue+0x9ac/0x1518 [mac80211]
ieee80211_tx_dequeue+0xb14/0x1518 [mac80211]
ieee80211_tx_prepare_skb+0x224/0x254 [mac80211]
ieee80211_xmit+0xec/0x100 [mac80211]
__ieee80211_subif_start_xmit+0xc50/0xf40 [mac80211]
ieee80211_subif_start_xmit+0x2e8/0x308 [mac80211]
netdev_start_xmit+0x150/0x18c
dev_hard_start_xmit+0x74/0xc0
Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.3.1-00173-QCAHKSWPL_SILICONZ-1 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7925: fix off by one in mt7925_mcu_hw_scan()
The ssid->ssids[] and sreq->ssids[] arrays have MT7925_RNR_SCAN_MAX_BSSIDS
elements so this >= needs to be > to prevent an out of bounds access. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7996: Fix possible OOB access in mt7996_tx()
Fis possible Out-Of-Boundary access in mt7996_tx routine if link_id is
set to IEEE80211_LINK_UNSPECIFIED |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix use-after-free in amdgpu_userq_suspend+0x51a/0x5a0
[ +0.000020] BUG: KASAN: slab-use-after-free in amdgpu_userq_suspend+0x51a/0x5a0 [amdgpu]
[ +0.000817] Read of size 8 at addr ffff88812eec8c58 by task amd_pci_unplug/1733
[ +0.000027] CPU: 10 UID: 0 PID: 1733 Comm: amd_pci_unplug Tainted: G W 6.14.0+ #2
[ +0.000009] Tainted: [W]=WARN
[ +0.000003] Hardware name: ASUS System Product Name/ROG STRIX B550-F GAMING (WI-FI), BIOS 1401 12/03/2020
[ +0.000004] Call Trace:
[ +0.000004] <TASK>
[ +0.000003] dump_stack_lvl+0x76/0xa0
[ +0.000011] print_report+0xce/0x600
[ +0.000009] ? srso_return_thunk+0x5/0x5f
[ +0.000006] ? kasan_complete_mode_report_info+0x76/0x200
[ +0.000007] ? kasan_addr_to_slab+0xd/0xb0
[ +0.000006] ? amdgpu_userq_suspend+0x51a/0x5a0 [amdgpu]
[ +0.000707] kasan_report+0xbe/0x110
[ +0.000006] ? amdgpu_userq_suspend+0x51a/0x5a0 [amdgpu]
[ +0.000541] __asan_report_load8_noabort+0x14/0x30
[ +0.000005] amdgpu_userq_suspend+0x51a/0x5a0 [amdgpu]
[ +0.000535] ? stop_cpsch+0x396/0x600 [amdgpu]
[ +0.000556] ? stop_cpsch+0x429/0x600 [amdgpu]
[ +0.000536] ? __pfx_amdgpu_userq_suspend+0x10/0x10 [amdgpu]
[ +0.000536] ? srso_return_thunk+0x5/0x5f
[ +0.000004] ? kgd2kfd_suspend+0x132/0x1d0 [amdgpu]
[ +0.000542] amdgpu_device_fini_hw+0x581/0xe90 [amdgpu]
[ +0.000485] ? down_write+0xbb/0x140
[ +0.000007] ? __mutex_unlock_slowpath.constprop.0+0x317/0x360
[ +0.000005] ? __pfx_amdgpu_device_fini_hw+0x10/0x10 [amdgpu]
[ +0.000482] ? __kasan_check_write+0x14/0x30
[ +0.000004] ? srso_return_thunk+0x5/0x5f
[ +0.000004] ? up_write+0x55/0xb0
[ +0.000007] ? srso_return_thunk+0x5/0x5f
[ +0.000005] ? blocking_notifier_chain_unregister+0x6c/0xc0
[ +0.000008] amdgpu_driver_unload_kms+0x69/0x90 [amdgpu]
[ +0.000484] amdgpu_pci_remove+0x93/0x130 [amdgpu]
[ +0.000482] pci_device_remove+0xae/0x1e0
[ +0.000008] device_remove+0xc7/0x180
[ +0.000008] device_release_driver_internal+0x3d4/0x5a0
[ +0.000007] device_release_driver+0x12/0x20
[ +0.000004] pci_stop_bus_device+0x104/0x150
[ +0.000006] pci_stop_and_remove_bus_device_locked+0x1b/0x40
[ +0.000005] remove_store+0xd7/0xf0
[ +0.000005] ? __pfx_remove_store+0x10/0x10
[ +0.000006] ? __pfx__copy_from_iter+0x10/0x10
[ +0.000006] ? __pfx_dev_attr_store+0x10/0x10
[ +0.000006] dev_attr_store+0x3f/0x80
[ +0.000006] sysfs_kf_write+0x125/0x1d0
[ +0.000004] ? srso_return_thunk+0x5/0x5f
[ +0.000005] ? __kasan_check_write+0x14/0x30
[ +0.000005] kernfs_fop_write_iter+0x2ea/0x490
[ +0.000005] ? rw_verify_area+0x70/0x420
[ +0.000005] ? __pfx_kernfs_fop_write_iter+0x10/0x10
[ +0.000006] vfs_write+0x90d/0xe70
[ +0.000005] ? srso_return_thunk+0x5/0x5f
[ +0.000005] ? __pfx_vfs_write+0x10/0x10
[ +0.000004] ? local_clock+0x15/0x30
[ +0.000008] ? srso_return_thunk+0x5/0x5f
[ +0.000004] ? __kasan_slab_free+0x5f/0x80
[ +0.000005] ? srso_return_thunk+0x5/0x5f
[ +0.000004] ? __kasan_check_read+0x11/0x20
[ +0.000004] ? srso_return_thunk+0x5/0x5f
[ +0.000004] ? fdget_pos+0x1d3/0x500
[ +0.000007] ksys_write+0x119/0x220
[ +0.000005] ? putname+0x1c/0x30
[ +0.000006] ? __pfx_ksys_write+0x10/0x10
[ +0.000007] __x64_sys_write+0x72/0xc0
[ +0.000006] x64_sys_call+0x18ab/0x26f0
[ +0.000006] do_syscall_64+0x7c/0x170
[ +0.000004] ? srso_return_thunk+0x5/0x5f
[ +0.000004] ? __pfx___x64_sys_openat+0x10/0x10
[ +0.000006] ? srso_return_thunk+0x5/0x5f
[ +0.000004] ? __kasan_check_read+0x11/0x20
[ +0.000003] ? srso_return_thunk+0x5/0x5f
[ +0.000004] ? fpregs_assert_state_consistent+0x21/0xb0
[ +0.000006] ? srso_return_thunk+0x5/0x5f
[ +0.000004] ? syscall_exit_to_user_mode+0x4e/0x240
[ +0.000005] ? srso_return_thunk+0x5/0x5f
[ +0.000004] ? do_syscall_64+0x88/0x170
[ +0.000003] ? srso_return_thunk+0x5/0x5f
[ +0.000004] ? irqentry_exit+0x43/0x50
[ +0.000004] ? srso_return_thunk+0x5
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/rockchip: vop2: fail cleanly if missing a primary plane for a video-port
Each window of a vop2 is usable by a specific set of video ports, so while
binding the vop2, we look through the list of available windows trying to
find one designated as primary-plane and usable by that specific port.
The code later wants to use drm_crtc_init_with_planes with that found
primary plane, but nothing has checked so far if a primary plane was
actually found.
For whatever reason, the rk3576 vp2 does not have a usable primary window
(if vp0 is also in use) which brought the issue to light and ended in a
null-pointer dereference further down.
As we expect a primary-plane to exist for a video-port, add a check at
the end of the window-iteration and fail probing if none was found. |