| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| go-gh is a Go module for interacting with the `gh` utility and the GitHub API from the command line. A security vulnerability has been identified in `go-gh` that could leak authentication tokens intended for GitHub hosts to non-GitHub hosts when within a codespace. `go-gh` sources authentication tokens from different environment variables depending on the host involved: 1. `GITHUB_TOKEN`, `GH_TOKEN` for GitHub.com and ghe.com and 2. `GITHUB_ENTERPRISE_TOKEN`, `GH_ENTERPRISE_TOKEN` for GitHub Enterprise Server. Prior to version `2.11.1`, `auth.TokenForHost` could source a token from the `GITHUB_TOKEN` environment variable for a host other than GitHub.com or ghe.com when within a codespace. In version `2.11.1`, `auth.TokenForHost` will only source a token from the `GITHUB_TOKEN` environment variable for GitHub.com or ghe.com hosts. Successful exploitation could send authentication token to an unintended host. This issue has been addressed in version 2.11.1 and all users are advised to upgrade. Users are also advised to regenerate authentication tokens and to review their personal security log and any relevant audit logs for actions associated with their account or enterprise. |
| An issue was discovered in Mahara 23.04.8 and 24.04.4. Attackers may utilize escalation of privileges in certain cases when logging into Mahara with Learning Tools Interoperability (LTI). |
| A user authorized to access a view may be able to alter the intended collation, allowing them to access to a different or unintended view of underlying data. This issue affects MongoDB Server v5.0 version prior to 5.0.31, MongoDB Server v6.0 version prior to 6.0.20, MongoDB Server v7.0 version prior to 7.0.14 and MongoDB Server v7.3 versions prior to 7.3.4. |
| Improper access control vulnerability in Telephony prior to SMR Apr-2023 Release 1 allows attackers to access files with escalated permission. |
| Improper access control vulnerability in SLocation prior to SMR Apr-2022 Release 1 allows local attackers to get device location information using com.samsung.android.wifi.GEOFENCE action. |
| Improper access control vulnerability in SLocation prior to SMR Apr-2022 Release 1 allows local attackers to get device location information using com.samsung.android.wifi.NETWORK_LOCATION action. |
| Intent redirection vulnerability in SecSettings prior to SMR Apr-2022 Release 1 allows attackers to access arbitrary file with system privilege. |
| Improper input validation vulnerability in TIGERF trustlet prior to SMR Apr-2023 Release 1 allows local attackers to access protected data. |
| Improper input validation vulnerability in CertByte prior to SMR Apr-2023 Release 1 allows local attackers to launch privileged activities. |
| Keystone is a content management system for Node.js. Prior to version 6.5.0, `{field}.isFilterable` access control can be bypassed in `update` and `delete` mutations by adding additional unique filters. These filters can be used as an oracle to probe the existence or value of otherwise unreadable fields. Specifically, when a mutation includes a `where` clause with multiple unique filters (e.g. `id` and `email`), Keystone will attempt to match records even if filtering by the latter fields would normally be rejected by `field.isFilterable` or `list.defaultIsFilterable`. This can allow malicious actors to infer the presence of a particular field value when a filter is successful in returning a result. This affects any project relying on the default or dynamic `isFilterable` behavior (at the list or field level) to prevent external users from using the filtering of fields as a discovery mechanism. While this access control is respected during `findMany` operations, it was not completely enforced during `update` and `delete` mutations when accepting more than one unique `where` values in filters. This has no impact on projects using `isFilterable: false` or `defaultIsFilterable: false` for sensitive fields, or for those who have otherwise omitted filtering by these fields from their GraphQL schema. This issue has been patched in `@keystone-6/core` version 6.5.0. To mitigate this issue in older versions where patching is not a viable pathway, set `isFilterable: false` statically for relevant fields to prevent filtering by them earlier in the access control pipeline (that is, don't use functions); set `{field}.graphql.omit.read: true` for relevant fields, which implicitly removes filtering by these fields from the GraphQL schema; and/or deny `update` and `delete` operations for the relevant lists completely. |
| Umbraco.Forms is a web form framework written for the nuget ecosystem. Character limits configured by editors for short and long answer fields are validated only client-side, not server-side. This issue has been patched in versions 8.13.16, 10.5.7, 13.2.2, and 14.1.2. Users are advised to upgrade. There are no known workarounds for this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/fpu: Keep xfd_state in sync with MSR_IA32_XFD
Commit 672365477ae8 ("x86/fpu: Update XFD state where required") and
commit 8bf26758ca96 ("x86/fpu: Add XFD state to fpstate") introduced a
per CPU variable xfd_state to keep the MSR_IA32_XFD value cached, in
order to avoid unnecessary writes to the MSR.
On CPU hotplug MSR_IA32_XFD is reset to the init_fpstate.xfd, which
wipes out any stale state. But the per CPU cached xfd value is not
reset, which brings them out of sync.
As a consequence a subsequent xfd_update_state() might fail to update
the MSR which in turn can result in XRSTOR raising a #NM in kernel
space, which crashes the kernel.
To fix this, introduce xfd_set_state() to write xfd_state together
with MSR_IA32_XFD, and use it in all places that set MSR_IA32_XFD. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: dts: qcom: sdm845-db845c: Mark cont splash memory region as reserved
Adding a reserved memory region for the framebuffer memory
(the splash memory region set up by the bootloader).
It fixes a kernel panic (arm-smmu: Unhandled context fault
at this particular memory region) reported on DB845c running
v5.10.y. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Prevent crash when disable stream
[Why]
Disabling stream encoder invokes a function that no longer exists.
[How]
Check if the function declaration is NULL in disable stream encoder. |
| In the Linux kernel, the following vulnerability has been resolved:
smb3: fix temporary data corruption in collapse range
collapse range doesn't discard the affected cached region
so can risk temporarily corrupting the file data. This
fixes xfstest generic/031
I also decided to merge a minor cleanup to this into the same patch
(avoiding rereading inode size repeatedly unnecessarily) to make it
clearer. |
| In the Linux kernel, the following vulnerability has been resolved:
smb3: fix temporary data corruption in insert range
insert range doesn't discard the affected cached region
so can risk temporarily corrupting file data.
Also includes some minor cleanup (avoiding rereading
inode size repeatedly unnecessarily) to make it clearer. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: Don't double unplug aux on peer initiated reset
In the IDC callback that is accessed when the aux drivers request a reset,
the function to unplug the aux devices is called. This function is also
called in the ice_prepare_for_reset function. This double call is causing
a "scheduling while atomic" BUG.
[ 662.676430] ice 0000:4c:00.0 rocep76s0: cqp opcode = 0x1 maj_err_code = 0xffff min_err_code = 0x8003
[ 662.676609] ice 0000:4c:00.0 rocep76s0: [Modify QP Cmd Error][op_code=8] status=-29 waiting=1 completion_err=1 maj=0xffff min=0x8003
[ 662.815006] ice 0000:4c:00.0 rocep76s0: ICE OICR event notification: oicr = 0x10000003
[ 662.815014] ice 0000:4c:00.0 rocep76s0: critical PE Error, GLPE_CRITERR=0x00011424
[ 662.815017] ice 0000:4c:00.0 rocep76s0: Requesting a reset
[ 662.815475] BUG: scheduling while atomic: swapper/37/0/0x00010002
[ 662.815475] BUG: scheduling while atomic: swapper/37/0/0x00010002
[ 662.815477] Modules linked in: rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver nfs lockd grace fscache netfs rfkill 8021q garp mrp stp llc vfat fat rpcrdma intel_rapl_msr intel_rapl_common sunrpc i10nm_edac rdma_ucm nfit ib_srpt libnvdimm ib_isert iscsi_target_mod x86_pkg_temp_thermal intel_powerclamp coretemp target_core_mod snd_hda_intel ib_iser snd_intel_dspcfg libiscsi snd_intel_sdw_acpi scsi_transport_iscsi kvm_intel iTCO_wdt rdma_cm snd_hda_codec kvm iw_cm ipmi_ssif iTCO_vendor_support snd_hda_core irqbypass crct10dif_pclmul crc32_pclmul ghash_clmulni_intel snd_hwdep snd_seq snd_seq_device rapl snd_pcm snd_timer isst_if_mbox_pci pcspkr isst_if_mmio irdma intel_uncore idxd acpi_ipmi joydev isst_if_common snd mei_me idxd_bus ipmi_si soundcore i2c_i801 mei ipmi_devintf i2c_smbus i2c_ismt ipmi_msghandler acpi_power_meter acpi_pad rv(OE) ib_uverbs ib_cm ib_core xfs libcrc32c ast i2c_algo_bit drm_vram_helper drm_kms_helper syscopyarea sysfillrect sysimgblt fb_sys_fops drm_ttm_helpe
r ttm
[ 662.815546] nvme nvme_core ice drm crc32c_intel i40e t10_pi wmi pinctrl_emmitsburg dm_mirror dm_region_hash dm_log dm_mod fuse
[ 662.815557] Preemption disabled at:
[ 662.815558] [<0000000000000000>] 0x0
[ 662.815563] CPU: 37 PID: 0 Comm: swapper/37 Kdump: loaded Tainted: G S OE 5.17.1 #2
[ 662.815566] Hardware name: Intel Corporation D50DNP/D50DNP, BIOS SE5C6301.86B.6624.D18.2111021741 11/02/2021
[ 662.815568] Call Trace:
[ 662.815572] <IRQ>
[ 662.815574] dump_stack_lvl+0x33/0x42
[ 662.815581] __schedule_bug.cold.147+0x7d/0x8a
[ 662.815588] __schedule+0x798/0x990
[ 662.815595] schedule+0x44/0xc0
[ 662.815597] schedule_preempt_disabled+0x14/0x20
[ 662.815600] __mutex_lock.isra.11+0x46c/0x490
[ 662.815603] ? __ibdev_printk+0x76/0xc0 [ib_core]
[ 662.815633] device_del+0x37/0x3d0
[ 662.815639] ice_unplug_aux_dev+0x1a/0x40 [ice]
[ 662.815674] ice_schedule_reset+0x3c/0xd0 [ice]
[ 662.815693] irdma_iidc_event_handler.cold.7+0xb6/0xd3 [irdma]
[ 662.815712] ? bitmap_find_next_zero_area_off+0x45/0xa0
[ 662.815719] ice_send_event_to_aux+0x54/0x70 [ice]
[ 662.815741] ice_misc_intr+0x21d/0x2d0 [ice]
[ 662.815756] __handle_irq_event_percpu+0x4c/0x180
[ 662.815762] handle_irq_event_percpu+0xf/0x40
[ 662.815764] handle_irq_event+0x34/0x60
[ 662.815766] handle_edge_irq+0x9a/0x1c0
[ 662.815770] __common_interrupt+0x62/0x100
[ 662.815774] common_interrupt+0xb4/0xd0
[ 662.815779] </IRQ>
[ 662.815780] <TASK>
[ 662.815780] asm_common_interrupt+0x1e/0x40
[ 662.815785] RIP: 0010:cpuidle_enter_state+0xd6/0x380
[ 662.815789] Code: 49 89 c4 0f 1f 44 00 00 31 ff e8 65 d7 95 ff 45 84 ff 74 12 9c 58 f6 c4 02 0f 85 64 02 00 00 31 ff e8 ae c5 9c ff fb 45 85 f6 <0f> 88 12 01 00 00 49 63 d6 4c 2b 24 24 48 8d 04 52 48 8d 04 82 49
[ 662.815791] RSP: 0018:ff2c2c4f18edbe80 EFLAGS: 00000202
[ 662.815793] RAX: ff280805df140000 RBX: 0000000000000002 RCX: 000000000000001f
[ 662.815795] RDX: 0000009a52da2d08 R
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net: enetc: deny offload of tc-based TSN features on VF interfaces
TSN features on the ENETC (taprio, cbs, gate, police) are configured
through a mix of command BD ring messages and port registers:
enetc_port_rd(), enetc_port_wr().
Port registers are a region of the ENETC memory map which are only
accessible from the PCIe Physical Function. They are not accessible from
the Virtual Functions.
Moreover, attempting to access these registers crashes the kernel:
$ echo 1 > /sys/bus/pci/devices/0000\:00\:00.0/sriov_numvfs
pci 0000:00:01.0: [1957:ef00] type 00 class 0x020001
fsl_enetc_vf 0000:00:01.0: Adding to iommu group 15
fsl_enetc_vf 0000:00:01.0: enabling device (0000 -> 0002)
fsl_enetc_vf 0000:00:01.0 eno0vf0: renamed from eth0
$ tc qdisc replace dev eno0vf0 root taprio num_tc 8 map 0 1 2 3 4 5 6 7 \
queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 base-time 0 \
sched-entry S 0x7f 900000 sched-entry S 0x80 100000 flags 0x2
Unable to handle kernel paging request at virtual address ffff800009551a08
Internal error: Oops: 96000007 [#1] PREEMPT SMP
pc : enetc_setup_tc_taprio+0x170/0x47c
lr : enetc_setup_tc_taprio+0x16c/0x47c
Call trace:
enetc_setup_tc_taprio+0x170/0x47c
enetc_setup_tc+0x38/0x2dc
taprio_change+0x43c/0x970
taprio_init+0x188/0x1e0
qdisc_create+0x114/0x470
tc_modify_qdisc+0x1fc/0x6c0
rtnetlink_rcv_msg+0x12c/0x390
Split enetc_setup_tc() into separate functions for the PF and for the
VF drivers. Also remove enetc_qos.o from being included into
enetc-vf.ko, since it serves absolutely no purpose there. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7921e: fix crash in chip reset fail
In case of drv own fail in reset, we may need to run mac_reset several
times. The sequence would trigger system crash as the log below.
Because we do not re-enable/schedule "tx_napi" before disable it again,
the process would keep waiting for state change in napi_diable(). To
avoid the problem and keep status synchronize for each run, goto final
resource handling if drv own failed.
[ 5857.353423] mt7921e 0000:3b:00.0: driver own failed
[ 5858.433427] mt7921e 0000:3b:00.0: Timeout for driver own
[ 5859.633430] mt7921e 0000:3b:00.0: driver own failed
[ 5859.633444] ------------[ cut here ]------------
[ 5859.633446] WARNING: CPU: 6 at kernel/kthread.c:659 kthread_park+0x11d
[ 5859.633717] Workqueue: mt76 mt7921_mac_reset_work [mt7921_common]
[ 5859.633728] RIP: 0010:kthread_park+0x11d/0x150
[ 5859.633736] RSP: 0018:ffff8881b676fc68 EFLAGS: 00010202
......
[ 5859.633766] Call Trace:
[ 5859.633768] <TASK>
[ 5859.633771] mt7921e_mac_reset+0x176/0x6f0 [mt7921e]
[ 5859.633778] mt7921_mac_reset_work+0x184/0x3a0 [mt7921_common]
[ 5859.633785] ? mt7921_mac_set_timing+0x520/0x520 [mt7921_common]
[ 5859.633794] ? __kasan_check_read+0x11/0x20
[ 5859.633802] process_one_work+0x7ee/0x1320
[ 5859.633810] worker_thread+0x53c/0x1240
[ 5859.633818] kthread+0x2b8/0x370
[ 5859.633824] ? process_one_work+0x1320/0x1320
[ 5859.633828] ? kthread_complete_and_exit+0x30/0x30
[ 5859.633834] ret_from_fork+0x1f/0x30
[ 5859.633842] </TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
i3c: master: mipi-i3c-hci: Fix a kernel panic for accessing DAT_data.
The `i3c_master_bus_init` function may attach the I2C devices before the
I3C bus initialization. In this flow, the DAT `alloc_entry`` will be used
before the DAT `init`. Additionally, if the `i3c_master_bus_init` fails,
the DAT `cleanup` will execute before the device is detached, which will
execue DAT `free_entry` function. The above scenario can cause the driver
to use DAT_data when it is NULL. |