Search

Search Results (331345 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2026-25578 1 Navidrome 1 Navidrome 2026-02-05 6.1 Medium
Navidrome is an open source web-based music collection server and streamer. Prior to version 0.60.0, a cross-site scripting vulnerability in the frontend allows a malicious attacker to inject code through the comment metadata of a song to exfiltrate user credentials. This issue has been patched in version 0.60.0.
CVE-2026-0948 1 Drupal 1 Microsoft Entra Id Sso Login 2026-02-05 6.5 Medium
Authentication Bypass Using an Alternate Path or Channel vulnerability in Drupal Microsoft Entra ID SSO Login allows Privilege Escalation.This issue affects Microsoft Entra ID SSO Login: from 0.0.0 before 1.0.4.
CVE-2026-23055 1 Linux 1 Linux Kernel 2026-02-05 N/A
In the Linux kernel, the following vulnerability has been resolved: i2c: riic: Move suspend handling to NOIRQ phase Commit 53326135d0e0 ("i2c: riic: Add suspend/resume support") added suspend support for the Renesas I2C driver and following this change on RZ/G3E the following WARNING is seen on entering suspend ... [ 134.275704] Freezing remaining freezable tasks completed (elapsed 0.001 seconds) [ 134.285536] ------------[ cut here ]------------ [ 134.290298] i2c i2c-2: Transfer while suspended [ 134.295174] WARNING: drivers/i2c/i2c-core.h:56 at __i2c_smbus_xfer+0x1e4/0x214, CPU#0: systemd-sleep/388 [ 134.365507] Tainted: [W]=WARN [ 134.368485] Hardware name: Renesas SMARC EVK version 2 based on r9a09g047e57 (DT) [ 134.375961] pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 134.382935] pc : __i2c_smbus_xfer+0x1e4/0x214 [ 134.387329] lr : __i2c_smbus_xfer+0x1e4/0x214 [ 134.391717] sp : ffff800083f23860 [ 134.395040] x29: ffff800083f23860 x28: 0000000000000000 x27: ffff800082ed5d60 [ 134.402226] x26: 0000001f4395fd74 x25: 0000000000000007 x24: 0000000000000001 [ 134.409408] x23: 0000000000000000 x22: 000000000000006f x21: ffff800083f23936 [ 134.416589] x20: ffff0000c090e140 x19: ffff0000c090e0d0 x18: 0000000000000006 [ 134.423771] x17: 6f63657320313030 x16: 2e30206465737061 x15: ffff800083f23280 [ 134.430953] x14: 0000000000000000 x13: ffff800082b16ce8 x12: 0000000000000f09 [ 134.438134] x11: 0000000000000503 x10: ffff800082b6ece8 x9 : ffff800082b16ce8 [ 134.445315] x8 : 00000000ffffefff x7 : ffff800082b6ece8 x6 : 80000000fffff000 [ 134.452495] x5 : 0000000000000504 x4 : 0000000000000000 x3 : 0000000000000000 [ 134.459672] x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff0000c9ee9e80 [ 134.466851] Call trace: [ 134.469311] __i2c_smbus_xfer+0x1e4/0x214 (P) [ 134.473715] i2c_smbus_xfer+0xbc/0x120 [ 134.477507] i2c_smbus_read_byte_data+0x4c/0x84 [ 134.482077] isl1208_i2c_read_time+0x44/0x178 [rtc_isl1208] [ 134.487703] isl1208_rtc_read_time+0x14/0x20 [rtc_isl1208] [ 134.493226] __rtc_read_time+0x44/0x88 [ 134.497012] rtc_read_time+0x3c/0x68 [ 134.500622] rtc_suspend+0x9c/0x170 The warning is triggered because I2C transfers can still be attempted while the controller is already suspended, due to inappropriate ordering of the system sleep callbacks. If the controller is autosuspended, there is no way to wake it up once runtime PM disabled (in suspend_late()). During system resume, the I2C controller will be available only after runtime PM is re-enabled (in resume_early()). However, this may be too late for some devices. Wake up the controller in the suspend() callback while runtime PM is still enabled. The I2C controller will remain available until the suspend_noirq() callback (pm_runtime_force_suspend()) is called. During resume, the I2C controller can be restored by the resume_noirq() callback (pm_runtime_force_resume()). Finally, the resume() callback re-enables autosuspend. As a result, the I2C controller can remain available until the system enters suspend_noirq() and from resume_noirq().
CVE-2026-22044 1 Glpi-project 1 Glpi 2026-02-05 6.5 Medium
GLPI is a free asset and IT management software package. From version 0.85 to before 10.0.23, an authenticated user can perform a SQL injection. This issue has been patched in version 10.0.23.
CVE-2026-23060 1 Linux 1 Linux Kernel 2026-02-05 7.0 High
In the Linux kernel, the following vulnerability has been resolved: crypto: authencesn - reject too-short AAD (assoclen<8) to match ESP/ESN spec authencesn assumes an ESP/ESN-formatted AAD. When assoclen is shorter than the minimum expected length, crypto_authenc_esn_decrypt() can advance past the end of the destination scatterlist and trigger a NULL pointer dereference in scatterwalk_map_and_copy(), leading to a kernel panic (DoS). Add a minimum AAD length check to fail fast on invalid inputs.
CVE-2026-23065 1 Linux 1 Linux Kernel 2026-02-05 N/A
In the Linux kernel, the following vulnerability has been resolved: platform/x86/amd: Fix memory leak in wbrf_record() The tmp buffer is allocated using kcalloc() but is not freed if acpi_evaluate_dsm() fails. This causes a memory leak in the error path. Fix this by explicitly freeing the tmp buffer in the error handling path of acpi_evaluate_dsm().
CVE-2026-23071 1 Linux 1 Linux Kernel 2026-02-05 7.0 High
In the Linux kernel, the following vulnerability has been resolved: regmap: Fix race condition in hwspinlock irqsave routine Previously, the address of the shared member '&map->spinlock_flags' was passed directly to 'hwspin_lock_timeout_irqsave'. This creates a race condition where multiple contexts contending for the lock could overwrite the shared flags variable, potentially corrupting the state for the current lock owner. Fix this by using a local stack variable 'flags' to store the IRQ state temporarily.
CVE-2026-23077 1 Linux 1 Linux Kernel 2026-02-05 N/A
In the Linux kernel, the following vulnerability has been resolved: mm/vma: fix anon_vma UAF on mremap() faulted, unfaulted merge Patch series "mm/vma: fix anon_vma UAF on mremap() faulted, unfaulted merge", v2. Commit 879bca0a2c4f ("mm/vma: fix incorrectly disallowed anonymous VMA merges") introduced the ability to merge previously unavailable VMA merge scenarios. However, it is handling merges incorrectly when it comes to mremap() of a faulted VMA adjacent to an unfaulted VMA. The issues arise in three cases: 1. Previous VMA unfaulted: copied -----| v |-----------|.............| | unfaulted |(faulted VMA)| |-----------|.............| prev 2. Next VMA unfaulted: copied -----| v |.............|-----------| |(faulted VMA)| unfaulted | |.............|-----------| next 3. Both adjacent VMAs unfaulted: copied -----| v |-----------|.............|-----------| | unfaulted |(faulted VMA)| unfaulted | |-----------|.............|-----------| prev next This series fixes each of these cases, and introduces self tests to assert that the issues are corrected. I also test a further case which was already handled, to assert that my changes continues to correctly handle it: 4. prev unfaulted, next faulted: copied -----| v |-----------|.............|-----------| | unfaulted |(faulted VMA)| faulted | |-----------|.............|-----------| prev next This bug was discovered via a syzbot report, linked to in the first patch in the series, I confirmed that this series fixes the bug. I also discovered that we are failing to check that the faulted VMA was not forked when merging a copied VMA in cases 1-3 above, an issue this series also addresses. I also added self tests to assert that this is resolved (and confirmed that the tests failed prior to this). I also cleaned up vma_expand() as part of this work, renamed vma_had_uncowed_parents() to vma_is_fork_child() as the previous name was unduly confusing, and simplified the comments around this function. This patch (of 4): Commit 879bca0a2c4f ("mm/vma: fix incorrectly disallowed anonymous VMA merges") introduced the ability to merge previously unavailable VMA merge scenarios. The key piece of logic introduced was the ability to merge a faulted VMA immediately next to an unfaulted VMA, which relies upon dup_anon_vma() to correctly handle anon_vma state. In the case of the merge of an existing VMA (that is changing properties of a VMA and then merging if those properties are shared by adjacent VMAs), dup_anon_vma() is invoked correctly. However in the case of the merge of a new VMA, a corner case peculiar to mremap() was missed. The issue is that vma_expand() only performs dup_anon_vma() if the target (the VMA that will ultimately become the merged VMA): is not the next VMA, i.e. the one that appears after the range in which the new VMA is to be established. A key insight here is that in all other cases other than mremap(), a new VMA merge either expands an existing VMA, meaning that the target VMA will be that VMA, or would have anon_vma be NULL. Specifically: * __mmap_region() - no anon_vma in place, initial mapping. * do_brk_flags() - expanding an existing VMA. * vma_merge_extend() - expanding an existing VMA. * relocate_vma_down() - no anon_vma in place, initial mapping. In addition, we are in the unique situation of needing to duplicate anon_vma state from a VMA that is neither the previous or next VMA being merged with. dup_anon_vma() deals exclusively with the target=unfaulted, src=faulted case. This leaves four possibilities, in each case where the copied VMA is faulted: 1. Previous VMA unfaulted: copied -----| ---truncated---
CVE-2019-25273 1 Easy-hide-ip 1 Easy-hide-ip 2026-02-05 7.8 High
Easy-Hide-IP 5.0.0.3 contains an unquoted service path vulnerability in the EasyRedirect service that allows local attackers to potentially execute arbitrary code. Attackers can exploit the unquoted path in 'C:\Program Files\Easy-Hide-IP\rdr\EasyRedirect.exe' to inject malicious executables and escalate privileges.
CVE-2026-0944 1 Drupal 1 Group Invite 2026-02-05 5.3 Medium
Improper Check for Unusual or Exceptional Conditions vulnerability in Drupal Group invite allows Forceful Browsing.This issue affects Group invite: from 0.0.0 before 2.3.9, from 3.0.0 before 3.0.4, from 4.0.0 before 4.0.4.
CVE-2026-0945 1 Drupal 1 Role Delegation 2026-02-05 N/A
Privilege Defined With Unsafe Actions vulnerability in Drupal Role Delegation allows Privilege Escalation.This issue affects Role Delegation: from 1.3.0 before 1.5.0.
CVE-2026-23086 1 Linux 1 Linux Kernel 2026-02-05 6.2 Medium
In the Linux kernel, the following vulnerability has been resolved: vsock/virtio: cap TX credit to local buffer size The virtio transports derives its TX credit directly from peer_buf_alloc, which is set from the remote endpoint's SO_VM_SOCKETS_BUFFER_SIZE value. On the host side this means that the amount of data we are willing to queue for a connection is scaled by a guest-chosen buffer size, rather than the host's own vsock configuration. A malicious guest can advertise a large buffer and read slowly, causing the host to allocate a correspondingly large amount of sk_buff memory. The same thing would happen in the guest with a malicious host, since virtio transports share the same code base. Introduce a small helper, virtio_transport_tx_buf_size(), that returns min(peer_buf_alloc, buf_alloc), and use it wherever we consume peer_buf_alloc. This ensures the effective TX window is bounded by both the peer's advertised buffer and our own buf_alloc (already clamped to buffer_max_size via SO_VM_SOCKETS_BUFFER_MAX_SIZE), so a remote peer cannot force the other to queue more data than allowed by its own vsock settings. On an unpatched Ubuntu 22.04 host (~64 GiB RAM), running a PoC with 32 guest vsock connections advertising 2 GiB each and reading slowly drove Slab/SUnreclaim from ~0.5 GiB to ~57 GiB; the system only recovered after killing the QEMU process. That said, if QEMU memory is limited with cgroups, the maximum memory used will be limited. With this patch applied: Before: MemFree: ~61.6 GiB Slab: ~142 MiB SUnreclaim: ~117 MiB After 32 high-credit connections: MemFree: ~61.5 GiB Slab: ~178 MiB SUnreclaim: ~152 MiB Only ~35 MiB increase in Slab/SUnreclaim, no host OOM, and the guest remains responsive. Compatibility with non-virtio transports: - VMCI uses the AF_VSOCK buffer knobs to size its queue pairs per socket based on the local vsk->buffer_* values; the remote side cannot enlarge those queues beyond what the local endpoint configured. - Hyper-V's vsock transport uses fixed-size VMBus ring buffers and an MTU bound; there is no peer-controlled credit field comparable to peer_buf_alloc, and the remote endpoint cannot drive in-flight kernel memory above those ring sizes. - The loopback path reuses virtio_transport_common.c, so it naturally follows the same semantics as the virtio transport. This change is limited to virtio_transport_common.c and thus affects virtio-vsock, vhost-vsock, and loopback, bringing them in line with the "remote window intersected with local policy" behaviour that VMCI and Hyper-V already effectively have. [Stefano: small adjustments after changing the previous patch] [Stefano: tweak the commit message]
CVE-2026-23087 1 Linux 1 Linux Kernel 2026-02-05 N/A
In the Linux kernel, the following vulnerability has been resolved: scsi: xen: scsiback: Fix potential memory leak in scsiback_remove() Memory allocated for struct vscsiblk_info in scsiback_probe() is not freed in scsiback_remove() leading to potential memory leaks on remove, as well as in the scsiback_probe() error paths. Fix that by freeing it in scsiback_remove().
CVE-2026-23100 1 Linux 1 Linux Kernel 2026-02-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm/hugetlb: fix hugetlb_pmd_shared() Patch series "mm/hugetlb: fixes for PMD table sharing (incl. using mmu_gather)", v3. One functional fix, one performance regression fix, and two related comment fixes. I cleaned up my prototype I recently shared [1] for the performance fix, deferring most of the cleanups I had in the prototype to a later point. While doing that I identified the other things. The goal of this patch set is to be backported to stable trees "fairly" easily. At least patch #1 and #4. Patch #1 fixes hugetlb_pmd_shared() not detecting any sharing Patch #2 + #3 are simple comment fixes that patch #4 interacts with. Patch #4 is a fix for the reported performance regression due to excessive IPI broadcasts during fork()+exit(). The last patch is all about TLB flushes, IPIs and mmu_gather. Read: complicated There are plenty of cleanups in the future to be had + one reasonable optimization on x86. But that's all out of scope for this series. Runtime tested, with a focus on fixing the performance regression using the original reproducer [2] on x86. This patch (of 4): We switched from (wrongly) using the page count to an independent shared count. Now, shared page tables have a refcount of 1 (excluding speculative references) and instead use ptdesc->pt_share_count to identify sharing. We didn't convert hugetlb_pmd_shared(), so right now, we would never detect a shared PMD table as such, because sharing/unsharing no longer touches the refcount of a PMD table. Page migration, like mbind() or migrate_pages() would allow for migrating folios mapped into such shared PMD tables, even though the folios are not exclusive. In smaps we would account them as "private" although they are "shared", and we would be wrongly setting the PM_MMAP_EXCLUSIVE in the pagemap interface. Fix it by properly using ptdesc_pmd_is_shared() in hugetlb_pmd_shared().
CVE-2026-23102 1 Linux 1 Linux Kernel 2026-02-05 N/A
In the Linux kernel, the following vulnerability has been resolved: arm64/fpsimd: signal: Fix restoration of SVE context When SME is supported, Restoring SVE signal context can go wrong in a few ways, including placing the task into an invalid state where the kernel may read from out-of-bounds memory (and may potentially take a fatal fault) and/or may kill the task with a SIGKILL. (1) Restoring a context with SVE_SIG_FLAG_SM set can place the task into an invalid state where SVCR.SM is set (and sve_state is non-NULL) but TIF_SME is clear, consequently resuting in out-of-bounds memory reads and/or killing the task with SIGKILL. This can only occur in unusual (but legitimate) cases where the SVE signal context has either been modified by userspace or was saved in the context of another task (e.g. as with CRIU), as otherwise the presence of an SVE signal context with SVE_SIG_FLAG_SM implies that TIF_SME is already set. While in this state, task_fpsimd_load() will NOT configure SMCR_ELx (leaving some arbitrary value configured in hardware) before restoring SVCR and attempting to restore the streaming mode SVE registers from memory via sve_load_state(). As the value of SMCR_ELx.LEN may be larger than the task's streaming SVE vector length, this may read memory outside of the task's allocated sve_state, reading unrelated data and/or triggering a fault. While this can result in secrets being loaded into streaming SVE registers, these values are never exposed. As TIF_SME is clear, fpsimd_bind_task_to_cpu() will configure CPACR_ELx.SMEN to trap EL0 accesses to streaming mode SVE registers, so these cannot be accessed directly at EL0. As fpsimd_save_user_state() verifies the live vector length before saving (S)SVE state to memory, no secret values can be saved back to memory (and hence cannot be observed via ptrace, signals, etc). When the live vector length doesn't match the expected vector length for the task, fpsimd_save_user_state() will send a fatal SIGKILL signal to the task. Hence the task may be killed after executing userspace for some period of time. (2) Restoring a context with SVE_SIG_FLAG_SM clear does not clear the task's SVCR.SM. If SVCR.SM was set prior to restoring the context, then the task will be left in streaming mode unexpectedly, and some register state will be combined inconsistently, though the task will be left in legitimate state from the kernel's PoV. This can only occur in unusual (but legitimate) cases where ptrace has been used to set SVCR.SM after entry to the sigreturn syscall, as syscall entry clears SVCR.SM. In these cases, the the provided SVE register data will be loaded into the task's sve_state using the non-streaming SVE vector length and the FPSIMD registers will be merged into this using the streaming SVE vector length. Fix (1) by setting TIF_SME when setting SVCR.SM. This also requires ensuring that the task's sme_state has been allocated, but as this could contain live ZA state, it should not be zeroed. Fix (2) by clearing SVCR.SM when restoring a SVE signal context with SVE_SIG_FLAG_SM clear. For consistency, I've pulled the manipulation of SVCR, TIF_SVE, TIF_SME, and fp_type earlier, immediately after the allocation of sve_state/sme_state, before the restore of the actual register state. This makes it easier to ensure that these are always modified consistently, even if a fault is taken while reading the register data from the signal context. I do not expect any software to depend on the exact state restored when a fault is taken while reading the context.
CVE-2026-23110 1 Linux 1 Linux Kernel 2026-02-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: core: Wake up the error handler when final completions race against each other The fragile ordering between marking commands completed or failed so that the error handler only wakes when the last running command completes or times out has race conditions. These race conditions can cause the SCSI layer to fail to wake the error handler, leaving I/O through the SCSI host stuck as the error state cannot advance. First, there is an memory ordering issue within scsi_dec_host_busy(). The write which clears SCMD_STATE_INFLIGHT may be reordered with reads counting in scsi_host_busy(). While the local CPU will see its own write, reordering can allow other CPUs in scsi_dec_host_busy() or scsi_eh_inc_host_failed() to see a raised busy count, causing no CPU to see a host busy equal to the host_failed count. This race condition can be prevented with a memory barrier on the error path to force the write to be visible before counting host busy commands. Second, there is a general ordering issue with scsi_eh_inc_host_failed(). By counting busy commands before incrementing host_failed, it can race with a final command in scsi_dec_host_busy(), such that scsi_dec_host_busy() does not see host_failed incremented but scsi_eh_inc_host_failed() counts busy commands before SCMD_STATE_INFLIGHT is cleared by scsi_dec_host_busy(), resulting in neither waking the error handler task. This needs the call to scsi_host_busy() to be moved after host_failed is incremented to close the race condition.
CVE-2026-23079 1 Linux 1 Linux Kernel 2026-02-05 N/A
In the Linux kernel, the following vulnerability has been resolved: gpio: cdev: Fix resource leaks on errors in lineinfo_changed_notify() On error handling paths, lineinfo_changed_notify() doesn't free the allocated resources which results leaks. Fix it.
CVE-2026-23093 1 Linux 1 Linux Kernel 2026-02-05 N/A
In the Linux kernel, the following vulnerability has been resolved: ksmbd: smbd: fix dma_unmap_sg() nents The dma_unmap_sg() functions should be called with the same nents as the dma_map_sg(), not the value the map function returned.
CVE-2026-23107 1 Linux 1 Linux Kernel 2026-02-05 7.0 High
In the Linux kernel, the following vulnerability has been resolved: arm64/fpsimd: signal: Allocate SSVE storage when restoring ZA The code to restore a ZA context doesn't attempt to allocate the task's sve_state before setting TIF_SME. Consequently, restoring a ZA context can place a task into an invalid state where TIF_SME is set but the task's sve_state is NULL. In legitimate but uncommon cases where the ZA signal context was NOT created by the kernel in the context of the same task (e.g. if the task is saved/restored with something like CRIU), we have no guarantee that sve_state had been allocated previously. In these cases, userspace can enter streaming mode without trapping while sve_state is NULL, causing a later NULL pointer dereference when the kernel attempts to store the register state: | # ./sigreturn-za | Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 | Mem abort info: | ESR = 0x0000000096000046 | EC = 0x25: DABT (current EL), IL = 32 bits | SET = 0, FnV = 0 | EA = 0, S1PTW = 0 | FSC = 0x06: level 2 translation fault | Data abort info: | ISV = 0, ISS = 0x00000046, ISS2 = 0x00000000 | CM = 0, WnR = 1, TnD = 0, TagAccess = 0 | GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 | user pgtable: 4k pages, 52-bit VAs, pgdp=0000000101f47c00 | [0000000000000000] pgd=08000001021d8403, p4d=0800000102274403, pud=0800000102275403, pmd=0000000000000000 | Internal error: Oops: 0000000096000046 [#1] SMP | Modules linked in: | CPU: 0 UID: 0 PID: 153 Comm: sigreturn-za Not tainted 6.19.0-rc1 #1 PREEMPT | Hardware name: linux,dummy-virt (DT) | pstate: 214000c9 (nzCv daIF +PAN -UAO -TCO +DIT -SSBS BTYPE=--) | pc : sve_save_state+0x4/0xf0 | lr : fpsimd_save_user_state+0xb0/0x1c0 | sp : ffff80008070bcc0 | x29: ffff80008070bcc0 x28: fff00000c1ca4c40 x27: 63cfa172fb5cf658 | x26: fff00000c1ca5228 x25: 0000000000000000 x24: 0000000000000000 | x23: 0000000000000000 x22: fff00000c1ca4c40 x21: fff00000c1ca4c40 | x20: 0000000000000020 x19: fff00000ff6900f0 x18: 0000000000000000 | x17: fff05e8e0311f000 x16: 0000000000000000 x15: 028fca8f3bdaf21c | x14: 0000000000000212 x13: fff00000c0209f10 x12: 0000000000000020 | x11: 0000000000200b20 x10: 0000000000000000 x9 : fff00000ff69dcc0 | x8 : 00000000000003f2 x7 : 0000000000000001 x6 : fff00000c1ca5b48 | x5 : fff05e8e0311f000 x4 : 0000000008000000 x3 : 0000000000000000 | x2 : 0000000000000001 x1 : fff00000c1ca5970 x0 : 0000000000000440 | Call trace: | sve_save_state+0x4/0xf0 (P) | fpsimd_thread_switch+0x48/0x198 | __switch_to+0x20/0x1c0 | __schedule+0x36c/0xce0 | schedule+0x34/0x11c | exit_to_user_mode_loop+0x124/0x188 | el0_interrupt+0xc8/0xd8 | __el0_irq_handler_common+0x18/0x24 | el0t_64_irq_handler+0x10/0x1c | el0t_64_irq+0x198/0x19c | Code: 54000040 d51b4408 d65f03c0 d503245f (e5bb5800) | ---[ end trace 0000000000000000 ]--- Fix this by having restore_za_context() ensure that the task's sve_state is allocated, matching what we do when taking an SME trap. Any live SVE/SSVE state (which is restored earlier from a separate signal context) must be preserved, and hence this is not zeroed.
CVE-2019-25267 1 Wftpserver 1 Wing Ftp Server 2026-02-05 7.8 High
Wing FTP Server 6.0.7 contains an unquoted service path vulnerability that allows local attackers to potentially execute arbitrary code with elevated system privileges. Attackers can exploit the unquoted binary path in the service configuration to inject malicious executables that will be launched with LocalSystem permissions.