CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
The WhyDonate – FREE Donate button – Crowdfunding – Fundraising plugin for WordPress is vulnerable to unauthorized loss of data due to a missing capability check on the remove_row function in all versions up to, and including, 4.0.14. This makes it possible for unauthenticated attackers to delete rows from the wp_wdplugin_style table. |
The Quick Social Login plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin's 'quick-login' shortcode in all versions up to, and including, 1.4.6 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
The WP BookWidgets plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin's 'bw_link' shortcode in all versions up to, and including, 0.9 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
The URLYar URL Shortner plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin's 'urlyar_shortlink' shortcode in all versions up to, and including, 1.1.0 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
The Demo Import Kit plugin for WordPress is vulnerable to arbitrary file uploads due to missing file type validation in all versions up to, and including, 1.1.0 via the import functionality. This makes it possible for authenticated attackers, with Administrator-level access and above, to upload arbitrary files on the affected site's server which may make remote code execution possible. |
The onOffice for WP-Websites plugin for WordPress is vulnerable to SQL Injection via the 'order' parameter in all versions up to, and including, 5.7 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for authenticated attackers, with Editor-level access and above, to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database. |
The Flex QR Code Generator plugin for WordPress is vulnerable to arbitrary file uploads due to missing file type validation in thesave_qr_code_to_db() function in all versions up to, and including, 1.2.5. This makes it possible for unauthenticated attackers to upload arbitrary files on the affected site's server which may make remote code execution possible. |
A path traversal issue exists in WXR9300BE6P series firmware versions prior to Ver.1.10. Arbitrary file may be altered by an administrative user who logs in to the affected product. Moreover, arbitrary OS command may be executed via some file alteration. |
This issue affects Apache Spark versions before 3.4.4, 3.5.2 and 4.0.0.
Apache Spark versions before 4.0.0, 3.5.2 and 3.4.4 use an insecure default network encryption cipher for RPC communication between nodes.
When spark.network.crypto.enabled is set to true (it is set to false by default), but spark.network.crypto.cipher is not explicitly configured, Spark defaults to AES in CTR mode (AES/CTR/NoPadding), which provides encryption without authentication.
This vulnerability allows a man-in-the-middle attacker to modify encrypted RPC traffic undetected by flipping bits in ciphertext, potentially compromising heartbeat messages or application data and affecting the integrity of Spark workflows.
To mitigate this issue, users should either configure spark.network.crypto.cipher to AES/GCM/NoPadding to enable authenticated encryption or
enable SSL encryption by setting spark.ssl.enabled to true, which provides stronger transport security. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw89: fix use-after-free in rtw89_core_tx_kick_off_and_wait()
There is a bug observed when rtw89_core_tx_kick_off_and_wait() tries to
access already freed skb_data:
BUG: KFENCE: use-after-free write in rtw89_core_tx_kick_off_and_wait drivers/net/wireless/realtek/rtw89/core.c:1110
CPU: 6 UID: 0 PID: 41377 Comm: kworker/u64:24 Not tainted 6.17.0-rc1+ #1 PREEMPT(lazy)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS edk2-20250523-14.fc42 05/23/2025
Workqueue: events_unbound cfg80211_wiphy_work [cfg80211]
Use-after-free write at 0x0000000020309d9d (in kfence-#251):
rtw89_core_tx_kick_off_and_wait drivers/net/wireless/realtek/rtw89/core.c:1110
rtw89_core_scan_complete drivers/net/wireless/realtek/rtw89/core.c:5338
rtw89_hw_scan_complete_cb drivers/net/wireless/realtek/rtw89/fw.c:7979
rtw89_chanctx_proceed_cb drivers/net/wireless/realtek/rtw89/chan.c:3165
rtw89_chanctx_proceed drivers/net/wireless/realtek/rtw89/chan.h:141
rtw89_hw_scan_complete drivers/net/wireless/realtek/rtw89/fw.c:8012
rtw89_mac_c2h_scanofld_rsp drivers/net/wireless/realtek/rtw89/mac.c:5059
rtw89_fw_c2h_work drivers/net/wireless/realtek/rtw89/fw.c:6758
process_one_work kernel/workqueue.c:3241
worker_thread kernel/workqueue.c:3400
kthread kernel/kthread.c:463
ret_from_fork arch/x86/kernel/process.c:154
ret_from_fork_asm arch/x86/entry/entry_64.S:258
kfence-#251: 0x0000000056e2393d-0x000000009943cb62, size=232, cache=skbuff_head_cache
allocated by task 41377 on cpu 6 at 77869.159548s (0.009551s ago):
__alloc_skb net/core/skbuff.c:659
__netdev_alloc_skb net/core/skbuff.c:734
ieee80211_nullfunc_get net/mac80211/tx.c:5844
rtw89_core_send_nullfunc drivers/net/wireless/realtek/rtw89/core.c:3431
rtw89_core_scan_complete drivers/net/wireless/realtek/rtw89/core.c:5338
rtw89_hw_scan_complete_cb drivers/net/wireless/realtek/rtw89/fw.c:7979
rtw89_chanctx_proceed_cb drivers/net/wireless/realtek/rtw89/chan.c:3165
rtw89_chanctx_proceed drivers/net/wireless/realtek/rtw89/chan.c:3194
rtw89_hw_scan_complete drivers/net/wireless/realtek/rtw89/fw.c:8012
rtw89_mac_c2h_scanofld_rsp drivers/net/wireless/realtek/rtw89/mac.c:5059
rtw89_fw_c2h_work drivers/net/wireless/realtek/rtw89/fw.c:6758
process_one_work kernel/workqueue.c:3241
worker_thread kernel/workqueue.c:3400
kthread kernel/kthread.c:463
ret_from_fork arch/x86/kernel/process.c:154
ret_from_fork_asm arch/x86/entry/entry_64.S:258
freed by task 1045 on cpu 9 at 77869.168393s (0.001557s ago):
ieee80211_tx_status_skb net/mac80211/status.c:1117
rtw89_pci_release_txwd_skb drivers/net/wireless/realtek/rtw89/pci.c:564
rtw89_pci_release_tx_skbs.isra.0 drivers/net/wireless/realtek/rtw89/pci.c:651
rtw89_pci_release_tx drivers/net/wireless/realtek/rtw89/pci.c:676
rtw89_pci_napi_poll drivers/net/wireless/realtek/rtw89/pci.c:4238
__napi_poll net/core/dev.c:7495
net_rx_action net/core/dev.c:7557 net/core/dev.c:7684
handle_softirqs kernel/softirq.c:580
do_softirq.part.0 kernel/softirq.c:480
__local_bh_enable_ip kernel/softirq.c:407
rtw89_pci_interrupt_threadfn drivers/net/wireless/realtek/rtw89/pci.c:927
irq_thread_fn kernel/irq/manage.c:1133
irq_thread kernel/irq/manage.c:1257
kthread kernel/kthread.c:463
ret_from_fork arch/x86/kernel/process.c:154
ret_from_fork_asm arch/x86/entry/entry_64.S:258
It is a consequence of a race between the waiting and the signaling side
of the completion:
Waiting thread Completing thread
rtw89_core_tx_kick_off_and_wait()
rcu_assign_pointer(skb_data->wait, wait)
/* start waiting */
wait_for_completion_timeout()
rtw89_pci_tx_status()
rtw89_core_tx_wait_complete()
rcu_read_lock()
/* signals completion and
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
blk-mq: fix blk_mq_tags double free while nr_requests grown
In the case user trigger tags grow by queue sysfs attribute nr_requests,
hctx->sched_tags will be freed directly and replaced with a new
allocated tags, see blk_mq_tag_update_depth().
The problem is that hctx->sched_tags is from elevator->et->tags, while
et->tags is still the freed tags, hence later elevator exit will try to
free the tags again, causing kernel panic.
Fix this problem by replacing et->tags with new allocated tags as well.
Noted there are still some long term problems that will require some
refactor to be fixed thoroughly[1].
[1] https://lore.kernel.org/all/20250815080216.410665-1-yukuai1@huaweicloud.com/ |
In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: fix race condition to UAF in snd_usbmidi_free
The previous commit 0718a78f6a9f ("ALSA: usb-audio: Kill timer properly at
removal") patched a UAF issue caused by the error timer.
However, because the error timer kill added in this patch occurs after the
endpoint delete, a race condition to UAF still occurs, albeit rarely.
Additionally, since kill-cleanup for urb is also missing, freed memory can
be accessed in interrupt context related to urb, which can cause UAF.
Therefore, to prevent this, error timer and urb must be killed before
freeing the heap memory. |
In the Linux kernel, the following vulnerability has been resolved:
mm: swap: check for stable address space before operating on the VMA
It is possible to hit a zero entry while traversing the vmas in unuse_mm()
called from swapoff path and accessing it causes the OOPS:
Unable to handle kernel NULL pointer dereference at virtual address
0000000000000446--> Loading the memory from offset 0x40 on the
XA_ZERO_ENTRY as address.
Mem abort info:
ESR = 0x0000000096000005
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x05: level 1 translation fault
The issue is manifested from the below race between the fork() on a
process and swapoff:
fork(dup_mmap()) swapoff(unuse_mm)
--------------- -----------------
1) Identical mtree is built using
__mt_dup().
2) copy_pte_range()-->
copy_nonpresent_pte():
The dst mm is added into the
mmlist to be visible to the
swapoff operation.
3) Fatal signal is sent to the parent
process(which is the current during the
fork) thus skip the duplication of the
vmas and mark the vma range with
XA_ZERO_ENTRY as a marker for this process
that helps during exit_mmap().
4) swapoff is tried on the
'mm' added to the 'mmlist' as
part of the 2.
5) unuse_mm(), that iterates
through the vma's of this 'mm'
will hit the non-NULL zero entry
and operating on this zero entry
as a vma is resulting into the
oops.
The proper fix would be around not exposing this partially-valid tree to
others when droping the mmap lock, which is being solved with [1]. A
simpler solution would be checking for MMF_UNSTABLE, as it is set if
mm_struct is not fully initialized in dup_mmap().
Thanks to Liam/Lorenzo/David for all the suggestions in fixing this
issue. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix NULL dereference in ath11k_qmi_m3_load()
If ab->fw.m3_data points to data, then fw pointer remains null.
Further, if m3_mem is not allocated, then fw is dereferenced to be
passed to ath11k_err function.
Replace fw->size by m3_len.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
In the Linux kernel, the following vulnerability has been resolved:
bpf: Check the helper function is valid in get_helper_proto
kernel test robot reported verifier bug [1] where the helper func
pointer could be NULL due to disabled config option.
As Alexei suggested we could check on that in get_helper_proto
directly. Marking tail_call helper func with BPF_PTR_POISON,
because it is unused by design.
[1] https://lore.kernel.org/oe-lkp/202507160818.68358831-lkp@intel.com |
In the Linux kernel, the following vulnerability has been resolved:
can: etas_es58x: populate ndo_change_mtu() to prevent buffer overflow
Sending an PF_PACKET allows to bypass the CAN framework logic and to
directly reach the xmit() function of a CAN driver. The only check
which is performed by the PF_PACKET framework is to make sure that
skb->len fits the interface's MTU.
Unfortunately, because the etas_es58x driver does not populate its
net_device_ops->ndo_change_mtu(), it is possible for an attacker to
configure an invalid MTU by doing, for example:
$ ip link set can0 mtu 9999
After doing so, the attacker could open a PF_PACKET socket using the
ETH_P_CANXL protocol:
socket(PF_PACKET, SOCK_RAW, htons(ETH_P_CANXL));
to inject a malicious CAN XL frames. For example:
struct canxl_frame frame = {
.flags = 0xff,
.len = 2048,
};
The CAN drivers' xmit() function are calling can_dev_dropped_skb() to
check that the skb is valid, unfortunately under above conditions, the
malicious packet is able to go through can_dev_dropped_skb() checks:
1. the skb->protocol is set to ETH_P_CANXL which is valid (the
function does not check the actual device capabilities).
2. the length is a valid CAN XL length.
And so, es58x_start_xmit() receives a CAN XL frame which it is not
able to correctly handle and will thus misinterpret it as a CAN(FD)
frame.
This can result in a buffer overflow. For example, using the es581.4
variant, the frame will be dispatched to es581_4_tx_can_msg(), go
through the last check at the beginning of this function:
if (can_is_canfd_skb(skb))
return -EMSGSIZE;
and reach this line:
memcpy(tx_can_msg->data, cf->data, cf->len);
Here, cf->len corresponds to the flags field of the CAN XL frame. In
our previous example, we set canxl_frame->flags to 0xff. Because the
maximum expected length is 8, a buffer overflow of 247 bytes occurs!
Populate net_device_ops->ndo_change_mtu() to ensure that the
interface's MTU can not be set to anything bigger than CAN_MTU or
CANFD_MTU (depending on the device capabilities). By fixing the root
cause, this prevents the buffer overflow. |
In the Linux kernel, the following vulnerability has been resolved:
can: hi311x: populate ndo_change_mtu() to prevent buffer overflow
Sending an PF_PACKET allows to bypass the CAN framework logic and to
directly reach the xmit() function of a CAN driver. The only check
which is performed by the PF_PACKET framework is to make sure that
skb->len fits the interface's MTU.
Unfortunately, because the sun4i_can driver does not populate its
net_device_ops->ndo_change_mtu(), it is possible for an attacker to
configure an invalid MTU by doing, for example:
$ ip link set can0 mtu 9999
After doing so, the attacker could open a PF_PACKET socket using the
ETH_P_CANXL protocol:
socket(PF_PACKET, SOCK_RAW, htons(ETH_P_CANXL))
to inject a malicious CAN XL frames. For example:
struct canxl_frame frame = {
.flags = 0xff,
.len = 2048,
};
The CAN drivers' xmit() function are calling can_dev_dropped_skb() to
check that the skb is valid, unfortunately under above conditions, the
malicious packet is able to go through can_dev_dropped_skb() checks:
1. the skb->protocol is set to ETH_P_CANXL which is valid (the
function does not check the actual device capabilities).
2. the length is a valid CAN XL length.
And so, hi3110_hard_start_xmit() receives a CAN XL frame which it is
not able to correctly handle and will thus misinterpret it as a CAN
frame. The driver will consume frame->len as-is with no further
checks.
This can result in a buffer overflow later on in hi3110_hw_tx() on
this line:
memcpy(buf + HI3110_FIFO_EXT_DATA_OFF,
frame->data, frame->len);
Here, frame->len corresponds to the flags field of the CAN XL frame.
In our previous example, we set canxl_frame->flags to 0xff. Because
the maximum expected length is 8, a buffer overflow of 247 bytes
occurs!
Populate net_device_ops->ndo_change_mtu() to ensure that the
interface's MTU can not be set to anything bigger than CAN_MTU. By
fixing the root cause, this prevents the buffer overflow. |
In the Linux kernel, the following vulnerability has been resolved:
can: sun4i_can: populate ndo_change_mtu() to prevent buffer overflow
Sending an PF_PACKET allows to bypass the CAN framework logic and to
directly reach the xmit() function of a CAN driver. The only check
which is performed by the PF_PACKET framework is to make sure that
skb->len fits the interface's MTU.
Unfortunately, because the sun4i_can driver does not populate its
net_device_ops->ndo_change_mtu(), it is possible for an attacker to
configure an invalid MTU by doing, for example:
$ ip link set can0 mtu 9999
After doing so, the attacker could open a PF_PACKET socket using the
ETH_P_CANXL protocol:
socket(PF_PACKET, SOCK_RAW, htons(ETH_P_CANXL))
to inject a malicious CAN XL frames. For example:
struct canxl_frame frame = {
.flags = 0xff,
.len = 2048,
};
The CAN drivers' xmit() function are calling can_dev_dropped_skb() to
check that the skb is valid, unfortunately under above conditions, the
malicious packet is able to go through can_dev_dropped_skb() checks:
1. the skb->protocol is set to ETH_P_CANXL which is valid (the
function does not check the actual device capabilities).
2. the length is a valid CAN XL length.
And so, sun4ican_start_xmit() receives a CAN XL frame which it is not
able to correctly handle and will thus misinterpret it as a CAN frame.
This can result in a buffer overflow. The driver will consume cf->len
as-is with no further checks on this line:
dlc = cf->len;
Here, cf->len corresponds to the flags field of the CAN XL frame. In
our previous example, we set canxl_frame->flags to 0xff. Because the
maximum expected length is 8, a buffer overflow of 247 bytes occurs a
couple line below when doing:
for (i = 0; i < dlc; i++)
writel(cf->data[i], priv->base + (dreg + i * 4));
Populate net_device_ops->ndo_change_mtu() to ensure that the
interface's MTU can not be set to anything bigger than CAN_MTU. By
fixing the root cause, this prevents the buffer overflow. |
In the Linux kernel, the following vulnerability has been resolved:
can: mcba_usb: populate ndo_change_mtu() to prevent buffer overflow
Sending an PF_PACKET allows to bypass the CAN framework logic and to
directly reach the xmit() function of a CAN driver. The only check
which is performed by the PF_PACKET framework is to make sure that
skb->len fits the interface's MTU.
Unfortunately, because the mcba_usb driver does not populate its
net_device_ops->ndo_change_mtu(), it is possible for an attacker to
configure an invalid MTU by doing, for example:
$ ip link set can0 mtu 9999
After doing so, the attacker could open a PF_PACKET socket using the
ETH_P_CANXL protocol:
socket(PF_PACKET, SOCK_RAW, htons(ETH_P_CANXL))
to inject a malicious CAN XL frames. For example:
struct canxl_frame frame = {
.flags = 0xff,
.len = 2048,
};
The CAN drivers' xmit() function are calling can_dev_dropped_skb() to
check that the skb is valid, unfortunately under above conditions, the
malicious packet is able to go through can_dev_dropped_skb() checks:
1. the skb->protocol is set to ETH_P_CANXL which is valid (the
function does not check the actual device capabilities).
2. the length is a valid CAN XL length.
And so, mcba_usb_start_xmit() receives a CAN XL frame which it is not
able to correctly handle and will thus misinterpret it as a CAN frame.
This can result in a buffer overflow. The driver will consume cf->len
as-is with no further checks on these lines:
usb_msg.dlc = cf->len;
memcpy(usb_msg.data, cf->data, usb_msg.dlc);
Here, cf->len corresponds to the flags field of the CAN XL frame. In
our previous example, we set canxl_frame->flags to 0xff. Because the
maximum expected length is 8, a buffer overflow of 247 bytes occurs!
Populate net_device_ops->ndo_change_mtu() to ensure that the
interface's MTU can not be set to anything bigger than CAN_MTU. By
fixing the root cause, this prevents the buffer overflow. |
In the Linux kernel, the following vulnerability has been resolved:
net: tun: Update napi->skb after XDP process
The syzbot report a UAF issue:
BUG: KASAN: slab-use-after-free in skb_reset_mac_header include/linux/skbuff.h:3150 [inline]
BUG: KASAN: slab-use-after-free in napi_frags_skb net/core/gro.c:723 [inline]
BUG: KASAN: slab-use-after-free in napi_gro_frags+0x6e/0x1030 net/core/gro.c:758
Read of size 8 at addr ffff88802ef22c18 by task syz.0.17/6079
CPU: 0 UID: 0 PID: 6079 Comm: syz.0.17 Not tainted syzkaller #0 PREEMPT(full)
Call Trace:
<TASK>
dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0xca/0x240 mm/kasan/report.c:482
kasan_report+0x118/0x150 mm/kasan/report.c:595
skb_reset_mac_header include/linux/skbuff.h:3150 [inline]
napi_frags_skb net/core/gro.c:723 [inline]
napi_gro_frags+0x6e/0x1030 net/core/gro.c:758
tun_get_user+0x28cb/0x3e20 drivers/net/tun.c:1920
tun_chr_write_iter+0x113/0x200 drivers/net/tun.c:1996
new_sync_write fs/read_write.c:593 [inline]
vfs_write+0x5c9/0xb30 fs/read_write.c:686
ksys_write+0x145/0x250 fs/read_write.c:738
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
</TASK>
Allocated by task 6079:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
unpoison_slab_object mm/kasan/common.c:330 [inline]
__kasan_mempool_unpoison_object+0xa0/0x170 mm/kasan/common.c:558
kasan_mempool_unpoison_object include/linux/kasan.h:388 [inline]
napi_skb_cache_get+0x37b/0x6d0 net/core/skbuff.c:295
__alloc_skb+0x11e/0x2d0 net/core/skbuff.c:657
napi_alloc_skb+0x84/0x7d0 net/core/skbuff.c:811
napi_get_frags+0x69/0x140 net/core/gro.c:673
tun_napi_alloc_frags drivers/net/tun.c:1404 [inline]
tun_get_user+0x77c/0x3e20 drivers/net/tun.c:1784
tun_chr_write_iter+0x113/0x200 drivers/net/tun.c:1996
new_sync_write fs/read_write.c:593 [inline]
vfs_write+0x5c9/0xb30 fs/read_write.c:686
ksys_write+0x145/0x250 fs/read_write.c:738
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Freed by task 6079:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
kasan_save_free_info+0x46/0x50 mm/kasan/generic.c:576
poison_slab_object mm/kasan/common.c:243 [inline]
__kasan_slab_free+0x5b/0x80 mm/kasan/common.c:275
kasan_slab_free include/linux/kasan.h:233 [inline]
slab_free_hook mm/slub.c:2422 [inline]
slab_free mm/slub.c:4695 [inline]
kmem_cache_free+0x18f/0x400 mm/slub.c:4797
skb_pp_cow_data+0xdd8/0x13e0 net/core/skbuff.c:969
netif_skb_check_for_xdp net/core/dev.c:5390 [inline]
netif_receive_generic_xdp net/core/dev.c:5431 [inline]
do_xdp_generic+0x699/0x11a0 net/core/dev.c:5499
tun_get_user+0x2523/0x3e20 drivers/net/tun.c:1872
tun_chr_write_iter+0x113/0x200 drivers/net/tun.c:1996
new_sync_write fs/read_write.c:593 [inline]
vfs_write+0x5c9/0xb30 fs/read_write.c:686
ksys_write+0x145/0x250 fs/read_write.c:738
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
After commit e6d5dbdd20aa ("xdp: add multi-buff support for xdp running in
generic mode"), the original skb may be freed in skb_pp_cow_data() when
XDP program was attached, which was allocated in tun_napi_alloc_frags().
However, the napi->skb still point to the original skb, update it after
XDP process. |