CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
null_blk: Always check queue mode setting from configfs
Make sure to check device queue mode in the null_validate_conf() and
return error for NULL_Q_RQ as we don't allow legacy I/O path, without
this patch we get OOPs when queue mode is set to 1 from configfs,
following are repro steps :-
modprobe null_blk nr_devices=0
mkdir config/nullb/nullb0
echo 1 > config/nullb/nullb0/memory_backed
echo 4096 > config/nullb/nullb0/blocksize
echo 20480 > config/nullb/nullb0/size
echo 1 > config/nullb/nullb0/queue_mode
echo 1 > config/nullb/nullb0/power
Entering kdb (current=0xffff88810acdd080, pid 2372) on processor 42 Oops: (null)
due to oops @ 0xffffffffc041c329
CPU: 42 PID: 2372 Comm: sh Tainted: G O N 6.3.0-rc5lblk+ #5
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
RIP: 0010:null_add_dev.part.0+0xd9/0x720 [null_blk]
Code: 01 00 00 85 d2 0f 85 a1 03 00 00 48 83 bb 08 01 00 00 00 0f 85 f7 03 00 00 80 bb 62 01 00 00 00 48 8b 75 20 0f 85 6d 02 00 00 <48> 89 6e 60 48 8b 75 20 bf 06 00 00 00 e8 f5 37 2c c1 48 8b 75 20
RSP: 0018:ffffc900052cbde0 EFLAGS: 00010246
RAX: 0000000000000001 RBX: ffff88811084d800 RCX: 0000000000000001
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff888100042e00
RBP: ffff8881053d8200 R08: ffffc900052cbd68 R09: ffff888105db2000
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000002
R13: ffff888104765200 R14: ffff88810eec1748 R15: ffff88810eec1740
FS: 00007fd445fd1740(0000) GS:ffff8897dfc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000060 CR3: 0000000166a00000 CR4: 0000000000350ee0
DR0: ffffffff8437a488 DR1: ffffffff8437a489 DR2: ffffffff8437a48a
DR3: ffffffff8437a48b DR6: 00000000ffff0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
nullb_device_power_store+0xd1/0x120 [null_blk]
configfs_write_iter+0xb4/0x120
vfs_write+0x2ba/0x3c0
ksys_write+0x5f/0xe0
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x72/0xdc
RIP: 0033:0x7fd4460c57a7
Code: 0d 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 51 c3 48 83 ec 28 48 89 54 24 18 48 89 74 24
RSP: 002b:00007ffd3792a4a8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 0000000000000002 RCX: 00007fd4460c57a7
RDX: 0000000000000002 RSI: 000055b43c02e4c0 RDI: 0000000000000001
RBP: 000055b43c02e4c0 R08: 000000000000000a R09: 00007fd44615b4e0
R10: 00007fd44615b3e0 R11: 0000000000000246 R12: 0000000000000002
R13: 00007fd446198520 R14: 0000000000000002 R15: 00007fd446198700
</TASK> |
In the Linux kernel, the following vulnerability has been resolved:
gpio: sifive: Fix refcount leak in sifive_gpio_probe
of_irq_find_parent() returns a node pointer with refcount incremented,
We should use of_node_put() on it when not needed anymore.
Add missing of_node_put() to avoid refcount leak. |
In the Linux kernel, the following vulnerability has been resolved:
cifs: Release folio lock on fscache read hit.
Under the current code, when cifs_readpage_worker is called, the call
contract is that the callee should unlock the page. This is documented
in the read_folio section of Documentation/filesystems/vfs.rst as:
> The filesystem should unlock the folio once the read has completed,
> whether it was successful or not.
Without this change, when fscache is in use and cache hit occurs during
a read, the page lock is leaked, producing the following stack on
subsequent reads (via mmap) to the page:
$ cat /proc/3890/task/12864/stack
[<0>] folio_wait_bit_common+0x124/0x350
[<0>] filemap_read_folio+0xad/0xf0
[<0>] filemap_fault+0x8b1/0xab0
[<0>] __do_fault+0x39/0x150
[<0>] do_fault+0x25c/0x3e0
[<0>] __handle_mm_fault+0x6ca/0xc70
[<0>] handle_mm_fault+0xe9/0x350
[<0>] do_user_addr_fault+0x225/0x6c0
[<0>] exc_page_fault+0x84/0x1b0
[<0>] asm_exc_page_fault+0x27/0x30
This requires a reboot to resolve; it is a deadlock.
Note however that the call to cifs_readpage_from_fscache does mark the
page clean, but does not free the folio lock. This happens in
__cifs_readpage_from_fscache on success. Releasing the lock at that
point however is not appropriate as cifs_readahead also calls
cifs_readpage_from_fscache and *does* unconditionally release the lock
after its return. This change therefore effectively makes
cifs_readpage_worker work like cifs_readahead. |
In the Linux kernel, the following vulnerability has been resolved:
ip_vti: fix potential slab-use-after-free in decode_session6
When ip_vti device is set to the qdisc of the sfb type, the cb field
of the sent skb may be modified during enqueuing. Then,
slab-use-after-free may occur when ip_vti device sends IPv6 packets.
As commit f855691975bb ("xfrm6: Fix the nexthdr offset in
_decode_session6.") showed, xfrm_decode_session was originally intended
only for the receive path. IP6CB(skb)->nhoff is not set during
transmission. Therefore, set the cb field in the skb to 0 before
sending packets. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: ensure CLM version is null-terminated to prevent stack-out-of-bounds
Fix a stack-out-of-bounds read in brcmfmac that occurs
when 'buf' that is not null-terminated is passed as an argument of
strreplace() in brcmf_c_preinit_dcmds(). This buffer is filled with
a CLM version string by memcpy() in brcmf_fil_iovar_data_get().
Ensure buf is null-terminated.
Found by a modified version of syzkaller.
[ 33.004414][ T1896] brcmfmac: brcmf_c_process_clm_blob: no clm_blob available (err=-2), device may have limited channels available
[ 33.013486][ T1896] brcmfmac: brcmf_c_preinit_dcmds: Firmware: BCM43236/3 wl0: Nov 30 2011 17:33:42 version 5.90.188.22
[ 33.021554][ T1896] ==================================================================
[ 33.022379][ T1896] BUG: KASAN: stack-out-of-bounds in strreplace+0xf2/0x110
[ 33.023122][ T1896] Read of size 1 at addr ffffc90001d6efc8 by task kworker/0:2/1896
[ 33.023852][ T1896]
[ 33.024096][ T1896] CPU: 0 PID: 1896 Comm: kworker/0:2 Tainted: G O 5.14.0+ #132
[ 33.024927][ T1896] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014
[ 33.026065][ T1896] Workqueue: usb_hub_wq hub_event
[ 33.026581][ T1896] Call Trace:
[ 33.026896][ T1896] dump_stack_lvl+0x57/0x7d
[ 33.027372][ T1896] print_address_description.constprop.0.cold+0xf/0x334
[ 33.028037][ T1896] ? strreplace+0xf2/0x110
[ 33.028403][ T1896] ? strreplace+0xf2/0x110
[ 33.028807][ T1896] kasan_report.cold+0x83/0xdf
[ 33.029283][ T1896] ? strreplace+0xf2/0x110
[ 33.029666][ T1896] strreplace+0xf2/0x110
[ 33.029966][ T1896] brcmf_c_preinit_dcmds+0xab1/0xc40
[ 33.030351][ T1896] ? brcmf_c_set_joinpref_default+0x100/0x100
[ 33.030787][ T1896] ? rcu_read_lock_sched_held+0xa1/0xd0
[ 33.031223][ T1896] ? rcu_read_lock_bh_held+0xb0/0xb0
[ 33.031661][ T1896] ? lock_acquire+0x19d/0x4e0
[ 33.032091][ T1896] ? find_held_lock+0x2d/0x110
[ 33.032605][ T1896] ? brcmf_usb_deq+0x1a7/0x260
[ 33.033087][ T1896] ? brcmf_usb_rx_fill_all+0x5a/0xf0
[ 33.033582][ T1896] brcmf_attach+0x246/0xd40
[ 33.034022][ T1896] ? wiphy_new_nm+0x1476/0x1d50
[ 33.034383][ T1896] ? kmemdup+0x30/0x40
[ 33.034722][ T1896] brcmf_usb_probe+0x12de/0x1690
[ 33.035223][ T1896] ? brcmf_usbdev_qinit.constprop.0+0x470/0x470
[ 33.035833][ T1896] usb_probe_interface+0x25f/0x710
[ 33.036315][ T1896] really_probe+0x1be/0xa90
[ 33.036656][ T1896] __driver_probe_device+0x2ab/0x460
[ 33.037026][ T1896] ? usb_match_id.part.0+0x88/0xc0
[ 33.037383][ T1896] driver_probe_device+0x49/0x120
[ 33.037790][ T1896] __device_attach_driver+0x18a/0x250
[ 33.038300][ T1896] ? driver_allows_async_probing+0x120/0x120
[ 33.038986][ T1896] bus_for_each_drv+0x123/0x1a0
[ 33.039906][ T1896] ? bus_rescan_devices+0x20/0x20
[ 33.041412][ T1896] ? lockdep_hardirqs_on_prepare+0x273/0x3e0
[ 33.041861][ T1896] ? trace_hardirqs_on+0x1c/0x120
[ 33.042330][ T1896] __device_attach+0x207/0x330
[ 33.042664][ T1896] ? device_bind_driver+0xb0/0xb0
[ 33.043026][ T1896] ? kobject_uevent_env+0x230/0x12c0
[ 33.043515][ T1896] bus_probe_device+0x1a2/0x260
[ 33.043914][ T1896] device_add+0xa61/0x1ce0
[ 33.044227][ T1896] ? __mutex_unlock_slowpath+0xe7/0x660
[ 33.044891][ T1896] ? __fw_devlink_link_to_suppliers+0x550/0x550
[ 33.045531][ T1896] usb_set_configuration+0x984/0x1770
[ 33.046051][ T1896] ? kernfs_create_link+0x175/0x230
[ 33.046548][ T1896] usb_generic_driver_probe+0x69/0x90
[ 33.046931][ T1896] usb_probe_device+0x9c/0x220
[ 33.047434][ T1896] really_probe+0x1be/0xa90
[ 33.047760][ T1896] __driver_probe_device+0x2ab/0x460
[ 33.048134][ T1896] driver_probe_device+0x49/0x120
[ 33.048516][ T1896] __device_attach_driver+0x18a/0x250
[ 33.048910][ T1896] ? driver_allows_async_probing+0x120/0x120
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
ipmi_si: fix a memleak in try_smi_init()
Kmemleak reported the following leak info in try_smi_init():
unreferenced object 0xffff00018ecf9400 (size 1024):
comm "modprobe", pid 2707763, jiffies 4300851415 (age 773.308s)
backtrace:
[<000000004ca5b312>] __kmalloc+0x4b8/0x7b0
[<00000000953b1072>] try_smi_init+0x148/0x5dc [ipmi_si]
[<000000006460d325>] 0xffff800081b10148
[<0000000039206ea5>] do_one_initcall+0x64/0x2a4
[<00000000601399ce>] do_init_module+0x50/0x300
[<000000003c12ba3c>] load_module+0x7a8/0x9e0
[<00000000c246fffe>] __se_sys_init_module+0x104/0x180
[<00000000eea99093>] __arm64_sys_init_module+0x24/0x30
[<0000000021b1ef87>] el0_svc_common.constprop.0+0x94/0x250
[<0000000070f4f8b7>] do_el0_svc+0x48/0xe0
[<000000005a05337f>] el0_svc+0x24/0x3c
[<000000005eb248d6>] el0_sync_handler+0x160/0x164
[<0000000030a59039>] el0_sync+0x160/0x180
The problem was that when an error occurred before handlers registration
and after allocating `new_smi->si_sm`, the variable wouldn't be freed in
the error handling afterwards since `shutdown_smi()` hadn't been
registered yet. Fix it by adding a `kfree()` in the error handling path
in `try_smi_init()`. |
In the Linux kernel, the following vulnerability has been resolved:
net: bcmgenet: Add a check for oversized packets
Occasionnaly we may get oversized packets from the hardware which
exceed the nomimal 2KiB buffer size we allocate SKBs with. Add an early
check which drops the packet to avoid invoking skb_over_panic() and move
on to processing the next packet. |
In the Linux kernel, the following vulnerability has been resolved:
eth: alx: take rtnl_lock on resume
Zbynek reports that alx trips an rtnl assertion on resume:
RTNL: assertion failed at net/core/dev.c (2891)
RIP: 0010:netif_set_real_num_tx_queues+0x1ac/0x1c0
Call Trace:
<TASK>
__alx_open+0x230/0x570 [alx]
alx_resume+0x54/0x80 [alx]
? pci_legacy_resume+0x80/0x80
dpm_run_callback+0x4a/0x150
device_resume+0x8b/0x190
async_resume+0x19/0x30
async_run_entry_fn+0x30/0x130
process_one_work+0x1e5/0x3b0
indeed the driver does not hold rtnl_lock during its internal close
and re-open functions during suspend/resume. Note that this is not
a huge bug as the driver implements its own locking, and does not
implement changing the number of queues, but we need to silence
the splat. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix sdma v4 sw fini error
Fix sdma v4 sw fini error for sdma 4.2.2 to
solve the following general protection fault
[ +0.108196] general protection fault, probably for non-canonical
address 0xd5e5a4ae79d24a32: 0000 [#1] PREEMPT SMP PTI
[ +0.000018] RIP: 0010:free_fw_priv+0xd/0x70
[ +0.000022] Call Trace:
[ +0.000012] <TASK>
[ +0.000011] release_firmware+0x55/0x80
[ +0.000021] amdgpu_ucode_release+0x11/0x20 [amdgpu]
[ +0.000415] amdgpu_sdma_destroy_inst_ctx+0x4f/0x90 [amdgpu]
[ +0.000360] sdma_v4_0_sw_fini+0xce/0x110 [amdgpu] |
In the Linux kernel, the following vulnerability has been resolved:
Input: raspberrypi-ts - fix refcount leak in rpi_ts_probe
rpi_firmware_get() take reference, we need to release it in error paths
as well. Use devm_rpi_firmware_get() helper to handling the resources.
Also remove the existing rpi_firmware_put(). |
In the Linux kernel, the following vulnerability has been resolved:
ARM: dts: exynos: Use Exynos5420 compatible for the MIPI video phy
For some reason, the driver adding support for Exynos5420 MIPI phy
back in 2016 wasn't used on Exynos5420, which caused a kernel panic.
Add the proper compatible for it. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw88: delete timer and free skb queue when unloading
Fix possible crash and memory leak on driver unload by deleting
TX purge timer and freeing C2H queue in 'rtw_core_deinit()',
shrink critical section in the latter by freeing COEX queue
out of TX report lock scope. |
In the Linux kernel, the following vulnerability has been resolved:
net: usbnet: Fix WARNING in usbnet_start_xmit/usb_submit_urb
The syzbot fuzzer identified a problem in the usbnet driver:
usb 1-1: BOGUS urb xfer, pipe 3 != type 1
WARNING: CPU: 0 PID: 754 at drivers/usb/core/urb.c:504 usb_submit_urb+0xed6/0x1880 drivers/usb/core/urb.c:504
Modules linked in:
CPU: 0 PID: 754 Comm: kworker/0:2 Not tainted 6.4.0-rc7-syzkaller-00014-g692b7dc87ca6 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/27/2023
Workqueue: mld mld_ifc_work
RIP: 0010:usb_submit_urb+0xed6/0x1880 drivers/usb/core/urb.c:504
Code: 7c 24 18 e8 2c b4 5b fb 48 8b 7c 24 18 e8 42 07 f0 fe 41 89 d8 44 89 e1 4c 89 ea 48 89 c6 48 c7 c7 a0 c9 fc 8a e8 5a 6f 23 fb <0f> 0b e9 58 f8 ff ff e8 fe b3 5b fb 48 81 c5 c0 05 00 00 e9 84 f7
RSP: 0018:ffffc9000463f568 EFLAGS: 00010086
RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000000
RDX: ffff88801eb28000 RSI: ffffffff814c03b7 RDI: 0000000000000001
RBP: ffff8881443b7190 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000001 R12: 0000000000000003
R13: ffff88802a77cb18 R14: 0000000000000003 R15: ffff888018262500
FS: 0000000000000000(0000) GS:ffff8880b9800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000556a99c15a18 CR3: 0000000028c71000 CR4: 0000000000350ef0
Call Trace:
<TASK>
usbnet_start_xmit+0xfe5/0x2190 drivers/net/usb/usbnet.c:1453
__netdev_start_xmit include/linux/netdevice.h:4918 [inline]
netdev_start_xmit include/linux/netdevice.h:4932 [inline]
xmit_one net/core/dev.c:3578 [inline]
dev_hard_start_xmit+0x187/0x700 net/core/dev.c:3594
...
This bug is caused by the fact that usbnet trusts the bulk endpoint
addresses its probe routine receives in the driver_info structure, and
it does not check to see that these endpoints actually exist and have
the expected type and directions.
The fix is simply to add such a check. |
In the Linux kernel, the following vulnerability has been resolved:
drivers: base: Free devm resources when unregistering a device
In the current code, devres_release_all() only gets called if the device
has a bus and has been probed.
This leads to issues when using bus-less or driver-less devices where
the device might never get freed if a managed resource holds a reference
to the device. This is happening in the DRM framework for example.
We should thus call devres_release_all() in the device_del() function to
make sure that the device-managed actions are properly executed when the
device is unregistered, even if it has neither a bus nor a driver.
This is effectively the same change than commit 2f8d16a996da ("devres:
release resources on device_del()") that got reverted by commit
a525a3ddeaca ("driver core: free devres in device_release") over
memory leaks concerns.
This patch effectively combines the two commits mentioned above to
release the resources both on device_del() and device_release() and get
the best of both worlds. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: Revert "scsi: core: Do not increase scsi_device's iorequest_cnt if dispatch failed"
The "atomic_inc(&cmd->device->iorequest_cnt)" in scsi_queue_rq() would
cause kernel panic because cmd->device may be freed after returning from
scsi_dispatch_cmd().
This reverts commit cfee29ffb45b1c9798011b19d454637d1b0fe87d. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: unmap and remove csa_va properly
Root PD BO should be reserved before unmap and remove
a bo_va from VM otherwise lockdep will complain.
v2: check fpriv->csa_va is not NULL instead of amdgpu_mcbp (christian)
[14616.936827] WARNING: CPU: 6 PID: 1711 at drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c:1762 amdgpu_vm_bo_del+0x399/0x3f0 [amdgpu]
[14616.937096] Call Trace:
[14616.937097] <TASK>
[14616.937102] amdgpu_driver_postclose_kms+0x249/0x2f0 [amdgpu]
[14616.937187] drm_file_free+0x1d6/0x300 [drm]
[14616.937207] drm_close_helper.isra.0+0x62/0x70 [drm]
[14616.937220] drm_release+0x5e/0x100 [drm]
[14616.937234] __fput+0x9f/0x280
[14616.937239] ____fput+0xe/0x20
[14616.937241] task_work_run+0x61/0x90
[14616.937246] exit_to_user_mode_prepare+0x215/0x220
[14616.937251] syscall_exit_to_user_mode+0x2a/0x60
[14616.937254] do_syscall_64+0x48/0x90
[14616.937257] entry_SYSCALL_64_after_hwframe+0x63/0xcd |
In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt76x0: fix oob access in mt76x0_phy_get_target_power
After 'commit ba45841ca5eb ("wifi: mt76: mt76x02: simplify struct
mt76x02_rate_power")', mt76x02 relies on ht[0-7] rate_power data for
vht mcs{0,7}, while it uses vth[0-1] rate_power for vht mcs {8,9}.
Fix a possible out-of-bound access in mt76x0_phy_get_target_power routine. |
In the Linux kernel, the following vulnerability has been resolved:
hwmon: (coretemp) Simplify platform device handling
Coretemp's platform driver is unconventional. All the real work is done
globally by the initcall and CPU hotplug notifiers, while the "driver"
effectively just wraps an allocation and the registration of the hwmon
interface in a long-winded round-trip through the driver core. The whole
logic of dynamically creating and destroying platform devices to bring
the interfaces up and down is error prone, since it assumes
platform_device_add() will synchronously bind the driver and set drvdata
before it returns, thus results in a NULL dereference if drivers_autoprobe
is turned off for the platform bus. Furthermore, the unusual approach of
doing that from within a CPU hotplug notifier, already commented in the
code that it deadlocks suspend, also causes lockdep issues for other
drivers or subsystems which may want to legitimately register a CPU
hotplug notifier from a platform bus notifier.
All of these issues can be solved by ripping this unusual behaviour out
completely, simply tying the platform devices to the lifetime of the
module itself, and directly managing the hwmon interfaces from the
hotplug notifiers. There is a slight user-visible change in that
/sys/bus/platform/drivers/coretemp will no longer appear, and
/sys/devices/platform/coretemp.n will remain present if package n is
hotplugged off, but hwmon users should really only be looking for the
presence of the hwmon interfaces, whose behaviour remains unchanged. |
In the Linux kernel, the following vulnerability has been resolved:
mm: /proc/pid/smaps_rollup: fix no vma's null-deref
Commit 258f669e7e88 ("mm: /proc/pid/smaps_rollup: convert to single value
seq_file") introduced a null-deref if there are no vma's in the task in
show_smaps_rollup. |
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: DR, fix memory leak in mlx5dr_cmd_create_reformat_ctx
when mlx5_cmd_exec failed in mlx5dr_cmd_create_reformat_ctx, the memory
pointed by 'in' is not released, which will cause memory leak. Move memory
release after mlx5_cmd_exec. |