| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
irqchip/gic-v3-its: Avoid truncating memory addresses
On 32-bit machines with CONFIG_ARM_LPAE, it is possible for lowmem
allocations to be backed by addresses physical memory above the 32-bit
address limit, as found while experimenting with larger VMSPLIT
configurations.
This caused the qemu virt model to crash in the GICv3 driver, which
allocates the 'itt' object using GFP_KERNEL. Since all memory below
the 4GB physical address limit is in ZONE_DMA in this configuration,
kmalloc() defaults to higher addresses for ZONE_NORMAL, and the
ITS driver stores the physical address in a 32-bit 'unsigned long'
variable.
Change the itt_addr variable to the correct phys_addr_t type instead,
along with all other variables in this driver that hold a physical
address.
The gicv5 driver correctly uses u64 variables, while all other irqchip
drivers don't call virt_to_phys or similar interfaces. It's expected that
other device drivers have similar issues, but fixing this one is
sufficient for booting a virtio based guest. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Fix use-after-free in snd_usb_mixer_free()
When snd_usb_create_mixer() fails, snd_usb_mixer_free() frees
mixer->id_elems but the controls already added to the card still
reference the freed memory. Later when snd_card_register() runs,
the OSS mixer layer calls their callbacks and hits a use-after-free read.
Call trace:
get_ctl_value+0x63f/0x820 sound/usb/mixer.c:411
get_min_max_with_quirks.isra.0+0x240/0x1f40 sound/usb/mixer.c:1241
mixer_ctl_feature_info+0x26b/0x490 sound/usb/mixer.c:1381
snd_mixer_oss_build_test+0x174/0x3a0 sound/core/oss/mixer_oss.c:887
...
snd_card_register+0x4ed/0x6d0 sound/core/init.c:923
usb_audio_probe+0x5ef/0x2a90 sound/usb/card.c:1025
Fix by calling snd_ctl_remove() for all mixer controls before freeing
id_elems. We save the next pointer first because snd_ctl_remove()
frees the current element. |
| In the Linux kernel, the following vulnerability has been resolved:
intel_th: fix device leak on output open()
Make sure to drop the reference taken when looking up the th device
during output device open() on errors and on close().
Note that a recent commit fixed the leak in a couple of open() error
paths but not all of them, and the reference is still leaking on
successful open(). |
| In the Linux kernel, the following vulnerability has been resolved:
iio: dac: ad3552r-hs: fix out-of-bound write in ad3552r_hs_write_data_source
When simple_write_to_buffer() succeeds, it returns the number of bytes
actually copied to the buffer. The code incorrectly uses 'count'
as the index for null termination instead of the actual bytes copied.
If count exceeds the buffer size, this leads to out-of-bounds write.
Add a check for the count and use the return value as the index.
The bug was validated using a demo module that mirrors the original
code and was tested under QEMU.
Pattern of the bug:
- A fixed 64-byte stack buffer is filled using count.
- If count > 64, the code still does buf[count] = '\0', causing an
- out-of-bounds write on the stack.
Steps for reproduce:
- Opens the device node.
- Writes 128 bytes of A to it.
- This overflows the 64-byte stack buffer and KASAN reports the OOB.
Found via static analysis. This is similar to the
commit da9374819eb3 ("iio: backend: fix out-of-bound write") |
| In the Linux kernel, the following vulnerability has been resolved:
uacce: fix isolate sysfs check condition
uacce supports the device isolation feature. If the driver
implements the isolate_err_threshold_read and
isolate_err_threshold_write callback functions, uacce will create
sysfs files now. Users can read and configure the isolation policy
through sysfs. Currently, sysfs files are created as long as either
isolate_err_threshold_read or isolate_err_threshold_write callback
functions are present.
However, accessing a non-existent callback function may cause the
system to crash. Therefore, intercept the creation of sysfs if
neither read nor write exists; create sysfs if either is supported,
but intercept unsupported operations at the call site. |
| In the Linux kernel, the following vulnerability has been resolved:
gue: Fix skb memleak with inner IP protocol 0.
syzbot reported skb memleak below. [0]
The repro generated a GUE packet with its inner protocol 0.
gue_udp_recv() returns -guehdr->proto_ctype for "resubmit"
in ip_protocol_deliver_rcu(), but this only works with
non-zero protocol number.
Let's drop such packets.
Note that 0 is a valid number (IPv6 Hop-by-Hop Option).
I think it is not practical to encap HOPOPT in GUE, so once
someone starts to complain, we could pass down a resubmit
flag pointer to distinguish two zeros from the upper layer:
* no error
* resubmit HOPOPT
[0]
BUG: memory leak
unreferenced object 0xffff888109695a00 (size 240):
comm "syz.0.17", pid 6088, jiffies 4294943096
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 40 c2 10 81 88 ff ff 00 00 00 00 00 00 00 00 .@..............
backtrace (crc a84b336f):
kmemleak_alloc_recursive include/linux/kmemleak.h:44 [inline]
slab_post_alloc_hook mm/slub.c:4958 [inline]
slab_alloc_node mm/slub.c:5263 [inline]
kmem_cache_alloc_noprof+0x3b4/0x590 mm/slub.c:5270
__build_skb+0x23/0x60 net/core/skbuff.c:474
build_skb+0x20/0x190 net/core/skbuff.c:490
__tun_build_skb drivers/net/tun.c:1541 [inline]
tun_build_skb+0x4a1/0xa40 drivers/net/tun.c:1636
tun_get_user+0xc12/0x2030 drivers/net/tun.c:1770
tun_chr_write_iter+0x71/0x120 drivers/net/tun.c:1999
new_sync_write fs/read_write.c:593 [inline]
vfs_write+0x45d/0x710 fs/read_write.c:686
ksys_write+0xa7/0x170 fs/read_write.c:738
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xa4/0xf80 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f |
| In the Linux kernel, the following vulnerability has been resolved:
migrate: correct lock ordering for hugetlb file folios
Syzbot has found a deadlock (analyzed by Lance Yang):
1) Task (5749): Holds folio_lock, then tries to acquire i_mmap_rwsem(read lock).
2) Task (5754): Holds i_mmap_rwsem(write lock), then tries to acquire
folio_lock.
migrate_pages()
-> migrate_hugetlbs()
-> unmap_and_move_huge_page() <- Takes folio_lock!
-> remove_migration_ptes()
-> __rmap_walk_file()
-> i_mmap_lock_read() <- Waits for i_mmap_rwsem(read lock)!
hugetlbfs_fallocate()
-> hugetlbfs_punch_hole() <- Takes i_mmap_rwsem(write lock)!
-> hugetlbfs_zero_partial_page()
-> filemap_lock_hugetlb_folio()
-> filemap_lock_folio()
-> __filemap_get_folio <- Waits for folio_lock!
The migration path is the one taking locks in the wrong order according to
the documentation at the top of mm/rmap.c. So expand the scope of the
existing i_mmap_lock to cover the calls to remove_migration_ptes() too.
This is (mostly) how it used to be after commit c0d0381ade79. That was
removed by 336bf30eb765 for both file & anon hugetlb pages when it should
only have been removed for anon hugetlb pages. |
| In the Linux kernel, the following vulnerability has been resolved:
bonding: limit BOND_MODE_8023AD to Ethernet devices
BOND_MODE_8023AD makes sense for ARPHRD_ETHER only.
syzbot reported:
BUG: KASAN: global-out-of-bounds in __hw_addr_create net/core/dev_addr_lists.c:63 [inline]
BUG: KASAN: global-out-of-bounds in __hw_addr_add_ex+0x25d/0x760 net/core/dev_addr_lists.c:118
Read of size 16 at addr ffffffff8bf94040 by task syz.1.3580/19497
CPU: 1 UID: 0 PID: 19497 Comm: syz.1.3580 Tainted: G L syzkaller #0 PREEMPT(full)
Tainted: [L]=SOFTLOCKUP
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025
Call Trace:
<TASK>
dump_stack_lvl+0xe8/0x150 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0xca/0x240 mm/kasan/report.c:482
kasan_report+0x118/0x150 mm/kasan/report.c:595
check_region_inline mm/kasan/generic.c:-1 [inline]
kasan_check_range+0x2b0/0x2c0 mm/kasan/generic.c:200
__asan_memcpy+0x29/0x70 mm/kasan/shadow.c:105
__hw_addr_create net/core/dev_addr_lists.c:63 [inline]
__hw_addr_add_ex+0x25d/0x760 net/core/dev_addr_lists.c:118
__dev_mc_add net/core/dev_addr_lists.c:868 [inline]
dev_mc_add+0xa1/0x120 net/core/dev_addr_lists.c:886
bond_enslave+0x2b8b/0x3ac0 drivers/net/bonding/bond_main.c:2180
do_set_master+0x533/0x6d0 net/core/rtnetlink.c:2963
do_setlink+0xcf0/0x41c0 net/core/rtnetlink.c:3165
rtnl_changelink net/core/rtnetlink.c:3776 [inline]
__rtnl_newlink net/core/rtnetlink.c:3935 [inline]
rtnl_newlink+0x161c/0x1c90 net/core/rtnetlink.c:4072
rtnetlink_rcv_msg+0x7cf/0xb70 net/core/rtnetlink.c:6958
netlink_rcv_skb+0x208/0x470 net/netlink/af_netlink.c:2550
netlink_unicast_kernel net/netlink/af_netlink.c:1318 [inline]
netlink_unicast+0x82f/0x9e0 net/netlink/af_netlink.c:1344
netlink_sendmsg+0x805/0xb30 net/netlink/af_netlink.c:1894
sock_sendmsg_nosec net/socket.c:727 [inline]
__sock_sendmsg+0x21c/0x270 net/socket.c:742
____sys_sendmsg+0x505/0x820 net/socket.c:2592
___sys_sendmsg+0x21f/0x2a0 net/socket.c:2646
__sys_sendmsg+0x164/0x220 net/socket.c:2678
do_syscall_32_irqs_on arch/x86/entry/syscall_32.c:83 [inline]
__do_fast_syscall_32+0x1dc/0x560 arch/x86/entry/syscall_32.c:307
do_fast_syscall_32+0x34/0x80 arch/x86/entry/syscall_32.c:332
entry_SYSENTER_compat_after_hwframe+0x84/0x8e
</TASK>
The buggy address belongs to the variable:
lacpdu_mcast_addr+0x0/0x40 |
| In the Linux kernel, the following vulnerability has been resolved:
leds: led-class: Only Add LED to leds_list when it is fully ready
Before this change the LED was added to leds_list before led_init_core()
gets called adding it the list before led_classdev.set_brightness_work gets
initialized.
This leaves a window where led_trigger_register() of a LED's default
trigger will call led_trigger_set() which calls led_set_brightness()
which in turn will end up queueing the *uninitialized*
led_classdev.set_brightness_work.
This race gets hit by the lenovo-thinkpad-t14s EC driver which registers
2 LEDs with a default trigger provided by snd_ctl_led.ko in quick
succession. The first led_classdev_register() causes an async modprobe of
snd_ctl_led to run and that async modprobe manages to exactly hit
the window where the second LED is on the leds_list without led_init_core()
being called for it, resulting in:
------------[ cut here ]------------
WARNING: CPU: 11 PID: 5608 at kernel/workqueue.c:4234 __flush_work+0x344/0x390
Hardware name: LENOVO 21N2S01F0B/21N2S01F0B, BIOS N42ET93W (2.23 ) 09/01/2025
...
Call trace:
__flush_work+0x344/0x390 (P)
flush_work+0x2c/0x50
led_trigger_set+0x1c8/0x340
led_trigger_register+0x17c/0x1c0
led_trigger_register_simple+0x84/0xe8
snd_ctl_led_init+0x40/0xf88 [snd_ctl_led]
do_one_initcall+0x5c/0x318
do_init_module+0x9c/0x2b8
load_module+0x7e0/0x998
Close the race window by moving the adding of the LED to leds_list to
after the led_init_core() call. |
| In the Linux kernel, the following vulnerability has been resolved:
ipvlan: Make the addrs_lock be per port
Make the addrs_lock be per port, not per ipvlan dev.
Initial code seems to be written in the assumption,
that any address change must occur under RTNL.
But it is not so for the case of IPv6. So
1) Introduce per-port addrs_lock.
2) It was needed to fix places where it was forgotten
to take lock (ipvlan_open/ipvlan_close)
This appears to be a very minor problem though.
Since it's highly unlikely that ipvlan_add_addr() will
be called on 2 CPU simultaneously. But nevertheless,
this could cause:
1) False-negative of ipvlan_addr_busy(): one interface
iterated through all port->ipvlans + ipvlan->addrs
under some ipvlan spinlock, and another added IP
under its own lock. Though this is only possible
for IPv6, since looks like only ipvlan_addr6_event() can be
called without rtnl_lock.
2) Race since ipvlan_ht_addr_add(port) is called under
different ipvlan->addrs_lock locks
This should not affect performance, since add/remove IP
is a rare situation and spinlock is not taken on fast
paths. |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: qfq: Use cl_is_active to determine whether class is active in qfq_rm_from_ag
This is more of a preventive patch to make the code more consistent and
to prevent possible exploits that employ child qlen manipulations on qfq.
use cl_is_active instead of relying on the child qdisc's qlen to determine
class activation. |
| In the Linux kernel, the following vulnerability has been resolved:
timekeeping: Adjust the leap state for the correct auxiliary timekeeper
When __do_ajdtimex() was introduced to handle adjtimex for any
timekeeper, this reference to tk_core was not updated. When called on an
auxiliary timekeeper, the core timekeeper would be updated incorrectly.
This gets caught by the lock debugging diagnostics because the
timekeepers sequence lock gets written to without holding its
associated spinlock:
WARNING: include/linux/seqlock.h:226 at __do_adjtimex+0x394/0x3b0, CPU#2: test/125
aux_clock_adj (kernel/time/timekeeping.c:2979)
__do_sys_clock_adjtime (kernel/time/posix-timers.c:1161 kernel/time/posix-timers.c:1173)
do_syscall_64 (arch/x86/entry/syscall_64.c:63 (discriminator 1) arch/x86/entry/syscall_64.c:94 (discriminator 1))
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:131)
Update the correct auxiliary timekeeper. |
| In the Linux kernel, the following vulnerability has been resolved:
can: usb_8dev: usb_8dev_read_bulk_callback(): fix URB memory leak
Fix similar memory leak as in commit 7352e1d5932a ("can: gs_usb:
gs_usb_receive_bulk_callback(): fix URB memory leak").
In usb_8dev_open() -> usb_8dev_start(), the URBs for USB-in transfers are
allocated, added to the priv->rx_submitted anchor and submitted. In the
complete callback usb_8dev_read_bulk_callback(), the URBs are processed and
resubmitted. In usb_8dev_close() -> unlink_all_urbs() the URBs are freed by
calling usb_kill_anchored_urbs(&priv->rx_submitted).
However, this does not take into account that the USB framework unanchors
the URB before the complete function is called. This means that once an
in-URB has been completed, it is no longer anchored and is ultimately not
released in usb_kill_anchored_urbs().
Fix the memory leak by anchoring the URB in the
usb_8dev_read_bulk_callback() to the priv->rx_submitted anchor. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/writeback: skip AS_NO_DATA_INTEGRITY mappings in wait_sb_inodes()
Above the while() loop in wait_sb_inodes(), we document that we must wait
for all pages under writeback for data integrity. Consequently, if a
mapping, like fuse, traditionally does not have data integrity semantics,
there is no need to wait at all; we can simply skip these inodes.
This restores fuse back to prior behavior where syncs are no-ops. This
fixes a user regression where if a system is running a faulty fuse server
that does not reply to issued write requests, this causes wait_sb_inodes()
to wait forever. |
| Improper access control in the TeamViewer Full and Host clients (Windows, macOS, Linux) prior version 15.74.5 allows an authenticated user to bypass additional access controls with “Allow after confirmation” configuration in a remote session. An exploit could result in unauthorized access prior to local confirmation. The user needs to be authenticated for the remote session via ID/password, Session Link, or Easy Access as a prerequisite to exploit this vulnerability. |
| GLPI is a free asset and IT management software package. In versions starting from 0.71 to before 10.0.23 and before 11.0.5, when remote authentication is used, based on SSO variables, a user can steal a GLPI session previously opened by another user on the same machine. This issue has been patched in versions . |
| Apollo Server is an open-source, spec-compliant GraphQL server that's compatible with any GraphQL client, including Apollo Client. In versions from 2.0.0 to 3.13.0, 4.2.0 to before 4.13.0, and 5.0.0 to before 5.4.0, the default configuration of startStandaloneServer from @apollo/server/standalone is vulnerable to denial of service (DoS) attacks through specially crafted request bodies with exotic character set encodings. This issue does not affect users that use @apollo/server as a dependency for integration packages, like @as-integrations/express5 or @as-integrations/next, only direct usage of startStandaloneServer. |
| apko allows users to build and publish OCI container images built from apk packages. From version 0.14.8 to before 1.1.1, a path traversal vulnerability was discovered in apko's dirFS filesystem abstraction. An attacker who can supply a malicious APK package (e.g., via a compromised or typosquatted repository) could create directories or symlinks outside the intended installation root. The MkdirAll, Mkdir, and Symlink methods in pkg/apk/fs/rwosfs.go use filepath.Join() without validating that the resulting path stays within the base directory. This issue has been patched in version 1.1.1. |
| apko allows users to build and publish OCI container images built from apk packages. From version 0.14.8 to before 1.1.1, an attacker who controls or compromises an APK repository used by apko could cause resource exhaustion on the build host. The ExpandApk function in pkg/apk/expandapk/expandapk.go expands .apk streams without enforcing decompression limits, allowing a malicious repository to serve a small, highly-compressed .apk that inflates into a large tar stream, consuming excessive disk space and CPU time, causing build failures or denial of service. This issue has been patched in version 1.1.1. |
| Langroid is a framework for building large-language-model-powered applications. Prior to version 0.59.32, there is a bypass to the fix for CVE-2025-46724. TableChatAgent can call pandas_eval tool to evaluate the expression. There is a WAF in langroid/utils/pandas_utils.py introduced to block code injection CVE-2025-46724. However it can be bypassed due to _literal_ok() returning False instead of raising UnsafeCommandError on invalid input, combined with unrestricted access to dangerous dunder attributes (__init__, __globals__, __builtins__). This allows chaining whitelisted DataFrame methods to leak the eval builtin and execute arbitrary code. This issue has been patched in version 0.59.32. |