| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
usb: acpi: Prevent null pointer dereference in usb_acpi_add_usb4_devlink()
As demonstrated by the fix for update_port_device_state,
commit 12783c0b9e2c ("usb: core: Prevent null pointer dereference in update_port_device_state"),
usb_hub_to_struct_hub() can return NULL in certain scenarios,
such as during hub driver unbind or teardown race conditions,
even if the underlying usb_device structure exists.
Plus, all other places that call usb_hub_to_struct_hub() in the same file
do check for NULL return values.
If usb_hub_to_struct_hub() returns NULL, the subsequent access to
hub->ports[udev->portnum - 1] will cause a null pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI/pwrctrl: Cancel outstanding rescan work when unregistering
It's possible to trigger use-after-free here by:
(a) forcing rescan_work_func() to take a long time and
(b) utilizing a pwrctrl driver that may be unloaded for some reason
Cancel outstanding work to ensure it is finished before we allow our data
structures to be cleaned up.
[bhelgaas: tidy commit log] |
| In the Linux kernel, the following vulnerability has been resolved:
netfs: Fix oops in write-retry from mis-resetting the subreq iterator
Fix the resetting of the subrequest iterator in netfs_retry_write_stream()
to use the iterator-reset function as the iterator may have been shortened
by a previous retry. In such a case, the amount of data to be written by
the subrequest is not "subreq->len" but "subreq->len -
subreq->transferred".
Without this, KASAN may see an error in iov_iter_revert():
BUG: KASAN: slab-out-of-bounds in iov_iter_revert lib/iov_iter.c:633 [inline]
BUG: KASAN: slab-out-of-bounds in iov_iter_revert+0x443/0x5a0 lib/iov_iter.c:611
Read of size 4 at addr ffff88802912a0b8 by task kworker/u32:7/1147
CPU: 1 UID: 0 PID: 1147 Comm: kworker/u32:7 Not tainted 6.15.0-rc6-syzkaller-00052-g9f35e33144ae #0 PREEMPT(full)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
Workqueue: events_unbound netfs_write_collection_worker
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:408 [inline]
print_report+0xc3/0x670 mm/kasan/report.c:521
kasan_report+0xe0/0x110 mm/kasan/report.c:634
iov_iter_revert lib/iov_iter.c:633 [inline]
iov_iter_revert+0x443/0x5a0 lib/iov_iter.c:611
netfs_retry_write_stream fs/netfs/write_retry.c:44 [inline]
netfs_retry_writes+0x166d/0x1a50 fs/netfs/write_retry.c:231
netfs_collect_write_results fs/netfs/write_collect.c:352 [inline]
netfs_write_collection_worker+0x23fd/0x3830 fs/netfs/write_collect.c:374
process_one_work+0x9cf/0x1b70 kernel/workqueue.c:3238
process_scheduled_works kernel/workqueue.c:3319 [inline]
worker_thread+0x6c8/0xf10 kernel/workqueue.c:3400
kthread+0x3c2/0x780 kernel/kthread.c:464
ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:153
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
dm: limit swapping tables for devices with zone write plugs
dm_revalidate_zones() only allowed new or previously unzoned devices to
call blk_revalidate_disk_zones(). If the device was already zoned,
disk->nr_zones would always equal md->nr_zones, so dm_revalidate_zones()
returned without doing any work. This would make the zoned settings for
the device not match the new table. If the device had zone write plug
resources, it could run into errors like bdev_zone_is_seq() reading
invalid memory because disk->conv_zones_bitmap was the wrong size.
If the device doesn't have any zone write plug resources, calling
blk_revalidate_disk_zones() will always correctly update device. If
blk_revalidate_disk_zones() fails, it can still overwrite or clear the
current disk->nr_zones value. In this case, DM must restore the previous
value of disk->nr_zones, so that the zoned settings will continue to
match the previous value that it fell back to.
If the device already has zone write plug resources,
blk_revalidate_disk_zones() will not correctly update them, if it is
called for arbitrary zoned device changes. Since there is not much need
for this ability, the easiest solution is to disallow any table reloads
that change the zoned settings, for devices that already have zone plug
resources. Specifically, if a device already has zone plug resources
allocated, it can only switch to another zoned table that also emulates
zone append. Also, it cannot change the device size or the zone size. A
device can switch to an error target. |
| In the Linux kernel, the following vulnerability has been resolved:
dm: fix dm_blk_report_zones
If dm_get_live_table() returned NULL, dm_put_live_table() was never
called. Also, it is possible that md->zone_revalidate_map will change
while calling this function. Only read it once, so that we are always
using the same value. Otherwise we might miss a call to
dm_put_live_table().
Finally, while md->zone_revalidate_map is set and a process is calling
blk_revalidate_disk_zones() to set up the zone append emulation
resources, it is possible that another process, perhaps triggered by
blkdev_report_zones_ioctl(), will call dm_blk_report_zones(). If
blk_revalidate_disk_zones() fails, these resources can be freed while
the other process is still using them, causing a use-after-free error.
blk_revalidate_disk_zones() will only ever be called when initially
setting up the zone append emulation resources, such as when setting up
a zoned dm-crypt table for the first time. Further table swaps will not
set md->zone_revalidate_map or call blk_revalidate_disk_zones().
However it must be called using the new table (referenced by
md->zone_revalidate_map) and the new queue limits while the DM device is
suspended. dm_blk_report_zones() needs some way to distinguish between a
call from blk_revalidate_disk_zones(), which must be allowed to use
md->zone_revalidate_map to access this not yet activated table, and all
other calls to dm_blk_report_zones(), which should not be allowed while
the device is suspended and cannot use md->zone_revalidate_map, since
the zone resources might be freed by the process currently calling
blk_revalidate_disk_zones().
Solve this by tracking the process that sets md->zone_revalidate_map in
dm_revalidate_zones() and only allowing that process to make use of it
in dm_blk_report_zones(). |
| In the Linux kernel, the following vulnerability has been resolved:
watchdog: lenovo_se30_wdt: Fix possible devm_ioremap() NULL pointer dereference in lenovo_se30_wdt_probe()
devm_ioremap() returns NULL on error. Currently, lenovo_se30_wdt_probe()
does not check for this case, which results in a NULL pointer
dereference.
Add NULL check after devm_ioremap() to prevent this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
net: phy: clear phydev->devlink when the link is deleted
There is a potential crash issue when disabling and re-enabling the
network port. When disabling the network port, phy_detach() calls
device_link_del() to remove the device link, but it does not clear
phydev->devlink, so phydev->devlink is not a NULL pointer. Then the
network port is re-enabled, but if phy_attach_direct() fails before
calling device_link_add(), the code jumps to the "error" label and
calls phy_detach(). Since phydev->devlink retains the old value from
the previous attach/detach cycle, device_link_del() uses the old value,
which accesses a NULL pointer and causes a crash. The simplified crash
log is as follows.
[ 24.702421] Call trace:
[ 24.704856] device_link_put_kref+0x20/0x120
[ 24.709124] device_link_del+0x30/0x48
[ 24.712864] phy_detach+0x24/0x168
[ 24.716261] phy_attach_direct+0x168/0x3a4
[ 24.720352] phylink_fwnode_phy_connect+0xc8/0x14c
[ 24.725140] phylink_of_phy_connect+0x1c/0x34
Therefore, phydev->devlink needs to be cleared when the device link is
deleted. |
| An out-of-bounds read vulnerability was found in Netfilter Connection Tracking (conntrack) in the Linux kernel. This flaw allows a remote user to disclose sensitive information via the DCCP protocol. |
| A flaw was found in the USB Host Controller Driver framework in the Linux kernel. The usb_giveback_urb function has a logic loophole in its implementation. Due to the inappropriate judgment condition of the goto statement, the function cannot return under the input of a specific malformed descriptor file, so it falls into an endless loop, resulting in a denial of service. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_set_pipapo: prevent overflow in lookup table allocation
When calculating the lookup table size, ensure the following
multiplication does not overflow:
- desc->field_len[] maximum value is U8_MAX multiplied by
NFT_PIPAPO_GROUPS_PER_BYTE(f) that can be 2, worst case.
- NFT_PIPAPO_BUCKETS(f->bb) is 2^8, worst case.
- sizeof(unsigned long), from sizeof(*f->lt), lt in
struct nft_pipapo_field.
Then, use check_mul_overflow() to multiply by bucket size and then use
check_add_overflow() to the alignment for avx2 (if needed). Finally, add
lt_size_check_overflow() helper and use it to consolidate this.
While at it, replace leftover allocation using the GFP_KERNEL to
GFP_KERNEL_ACCOUNT for consistency, in pipapo_resize(). |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: zone: fix to avoid inconsistence in between SIT and SSA
w/ below testcase, it will cause inconsistence in between SIT and SSA.
create_null_blk 512 2 1024 1024
mkfs.f2fs -m /dev/nullb0
mount /dev/nullb0 /mnt/f2fs/
touch /mnt/f2fs/file
f2fs_io pinfile set /mnt/f2fs/file
fallocate -l 4GiB /mnt/f2fs/file
F2FS-fs (nullb0): Inconsistent segment (0) type [1, 0] in SSA and SIT
CPU: 5 UID: 0 PID: 2398 Comm: fallocate Tainted: G O 6.13.0-rc1 #84
Tainted: [O]=OOT_MODULE
Hardware name: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006
Call Trace:
<TASK>
dump_stack_lvl+0xb3/0xd0
dump_stack+0x14/0x20
f2fs_handle_critical_error+0x18c/0x220 [f2fs]
f2fs_stop_checkpoint+0x38/0x50 [f2fs]
do_garbage_collect+0x674/0x6e0 [f2fs]
f2fs_gc_range+0x12b/0x230 [f2fs]
f2fs_allocate_pinning_section+0x5c/0x150 [f2fs]
f2fs_expand_inode_data+0x1cc/0x3c0 [f2fs]
f2fs_fallocate+0x3c3/0x410 [f2fs]
vfs_fallocate+0x15f/0x4b0
__x64_sys_fallocate+0x4a/0x80
x64_sys_call+0x15e8/0x1b80
do_syscall_64+0x68/0x130
entry_SYSCALL_64_after_hwframe+0x67/0x6f
RIP: 0033:0x7f9dba5197ca
F2FS-fs (nullb0): Stopped filesystem due to reason: 4
The reason is f2fs_gc_range() may try to migrate block in curseg, however,
its SSA block is not uptodate due to the last summary block data is still
in cache of curseg.
In this patch, we add a condition in f2fs_gc_range() to check whether
section is opened or not, and skip block migration for opened section. |
| In the Linux kernel, the following vulnerability has been resolved:
perf: arm-ni: Unregister PMUs on probe failure
When a resource allocation fails in one clock domain of an NI device,
we need to properly roll back all previously registered perf PMUs in
other clock domains of the same device.
Otherwise, it can lead to kernel panics.
Calling arm_ni_init+0x0/0xff8 [arm_ni] @ 2374
arm-ni ARMHCB70:00: Failed to request PMU region 0x1f3c13000
arm-ni ARMHCB70:00: probe with driver arm-ni failed with error -16
list_add corruption: next->prev should be prev (fffffd01e9698a18),
but was 0000000000000000. (next=ffff10001a0decc8).
pstate: 6340009 (nZCv daif +PAN -UAO +TCO +DIT -SSBS BTYPE=--)
pc : list_add_valid_or_report+0x7c/0xb8
lr : list_add_valid_or_report+0x7c/0xb8
Call trace:
__list_add_valid_or_report+0x7c/0xb8
perf_pmu_register+0x22c/0x3a0
arm_ni_probe+0x554/0x70c [arm_ni]
platform_probe+0x70/0xe8
really_probe+0xc6/0x4d8
driver_probe_device+0x48/0x170
__driver_attach+0x8e/0x1c0
bus_for_each_dev+0x64/0xf0
driver_add+0x138/0x260
bus_add_driver+0x68/0x138
__platform_driver_register+0x2c/0x40
arm_ni_init+0x14/0x2a [arm_ni]
do_init_module+0x36/0x298
---[ end trace 0000000000000000 ]---
Kernel panic - not syncing: Oops - BUG: Fatal exception
SMP: stopping secondary CPUs |
| In the Linux kernel, the following vulnerability has been resolved:
arm64/fpsimd: Avoid clobbering kernel FPSIMD state with SMSTOP
On system with SME, a thread's kernel FPSIMD state may be erroneously
clobbered during a context switch immediately after that state is
restored. Systems without SME are unaffected.
If the CPU happens to be in streaming SVE mode before a context switch
to a thread with kernel FPSIMD state, fpsimd_thread_switch() will
restore the kernel FPSIMD state using fpsimd_load_kernel_state() while
the CPU is still in streaming SVE mode. When fpsimd_thread_switch()
subsequently calls fpsimd_flush_cpu_state(), this will execute an
SMSTOP, causing an exit from streaming SVE mode. The exit from
streaming SVE mode will cause the hardware to reset a number of
FPSIMD/SVE/SME registers, clobbering the FPSIMD state.
Fix this by calling fpsimd_flush_cpu_state() before restoring the kernel
FPSIMD state. |
| In the Linux kernel, the following vulnerability has been resolved:
power: supply: max77705: Fix workqueue error handling in probe
The create_singlethread_workqueue() doesn't return error pointers, it
returns NULL. Also cleanup the workqueue on the error paths. |
| In the Linux kernel, the following vulnerability has been resolved:
erofs: avoid using multiple devices with different type
For multiple devices, both primary and extra devices should be the
same type. `erofs_init_device` has already guaranteed that if the
primary is a file-backed device, extra devices should also be
regular files.
However, if the primary is a block device while the extra device
is a file-backed device, `erofs_init_device` will get an ENOTBLK,
which is not treated as an error in `erofs_fc_get_tree`, and that
leads to an UAF:
erofs_fc_get_tree
get_tree_bdev_flags(erofs_fc_fill_super)
erofs_read_superblock
erofs_init_device // sbi->dif0 is not inited yet,
// return -ENOTBLK
deactivate_locked_super
free(sbi)
if (err is -ENOTBLK)
sbi->dif0.file = filp_open() // sbi UAF
So if -ENOTBLK is hitted in `erofs_init_device`, it means the
primary device must be a block device, and the extra device
is not a block device. The error can be converted to -EINVAL. |
| ImageMagick is a free and open-source software suite, used for editing and manipulating digital images. The `AppImage` version `ImageMagick` might use an empty path when setting `MAGICK_CONFIGURE_PATH` and `LD_LIBRARY_PATH` environment variables while executing, which might lead to arbitrary code execution by loading malicious configuration files or shared libraries in the current working directory while executing `ImageMagick`. The vulnerability is fixed in 7.11-36. |
| A NULL pointer dereference flaw was found in dbFree in fs/jfs/jfs_dmap.c in the journaling file system (JFS) in the Linux Kernel. This issue may allow a local attacker to crash the system due to a missing sanity check. |
| A use-after-free flaw was found in the __ext4_remount in fs/ext4/super.c in ext4 in the Linux kernel. This flaw allows a local user to cause an information leak problem while freeing the old quota file names before a potential failure, leading to a use-after-free. |
| A denial of service vulnerability was found in tipc_crypto_key_revoke in net/tipc/crypto.c in the Linux kernel’s TIPC subsystem. This flaw allows guests with local user privileges to trigger a deadlock and potentially crash the system. |
| A denial of service vulnerability due to a deadlock was found in sctp_auto_asconf_init in net/sctp/socket.c in the Linux kernel’s SCTP subsystem. This flaw allows guests with local user privileges to trigger a deadlock and potentially crash the system. |