| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
block: Remove queue freezing from several sysfs store callbacks
Freezing the request queue from inside sysfs store callbacks may cause a
deadlock in combination with the dm-multipath driver and the
queue_if_no_path option. Additionally, freezing the request queue slows
down system boot on systems where sysfs attributes are set synchronously.
Fix this by removing the blk_mq_freeze_queue() / blk_mq_unfreeze_queue()
calls from the store callbacks that do not strictly need these callbacks.
Add the __data_racy annotation to request_queue.rq_timeout to suppress
KCSAN data race reports about the rq_timeout reads.
This patch may cause a small delay in applying the new settings.
For all the attributes affected by this patch, I/O will complete
correctly whether the old or the new value of the attribute is used.
This patch affects the following sysfs attributes:
* io_poll_delay
* io_timeout
* nomerges
* read_ahead_kb
* rq_affinity
Here is an example of a deadlock triggered by running test srp/002
if this patch is not applied:
task:multipathd
Call Trace:
<TASK>
__schedule+0x8c1/0x1bf0
schedule+0xdd/0x270
schedule_preempt_disabled+0x1c/0x30
__mutex_lock+0xb89/0x1650
mutex_lock_nested+0x1f/0x30
dm_table_set_restrictions+0x823/0xdf0
__bind+0x166/0x590
dm_swap_table+0x2a7/0x490
do_resume+0x1b1/0x610
dev_suspend+0x55/0x1a0
ctl_ioctl+0x3a5/0x7e0
dm_ctl_ioctl+0x12/0x20
__x64_sys_ioctl+0x127/0x1a0
x64_sys_call+0xe2b/0x17d0
do_syscall_64+0x96/0x3a0
entry_SYSCALL_64_after_hwframe+0x4b/0x53
</TASK>
task:(udev-worker)
Call Trace:
<TASK>
__schedule+0x8c1/0x1bf0
schedule+0xdd/0x270
blk_mq_freeze_queue_wait+0xf2/0x140
blk_mq_freeze_queue_nomemsave+0x23/0x30
queue_ra_store+0x14e/0x290
queue_attr_store+0x23e/0x2c0
sysfs_kf_write+0xde/0x140
kernfs_fop_write_iter+0x3b2/0x630
vfs_write+0x4fd/0x1390
ksys_write+0xfd/0x230
__x64_sys_write+0x76/0xc0
x64_sys_call+0x276/0x17d0
do_syscall_64+0x96/0x3a0
entry_SYSCALL_64_after_hwframe+0x4b/0x53
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
mm/slub: reset KASAN tag in defer_free() before accessing freed memory
When CONFIG_SLUB_TINY is enabled, kfree_nolock() calls kasan_slab_free()
before defer_free(). On ARM64 with MTE (Memory Tagging Extension),
kasan_slab_free() poisons the memory and changes the tag from the
original (e.g., 0xf3) to a poison tag (0xfe).
When defer_free() then tries to write to the freed object to build the
deferred free list via llist_add(), the pointer still has the old tag,
causing a tag mismatch and triggering a KASAN use-after-free report:
BUG: KASAN: slab-use-after-free in defer_free+0x3c/0xbc mm/slub.c:6537
Write at addr f3f000000854f020 by task kworker/u8:6/983
Pointer tag: [f3], memory tag: [fe]
Fix this by calling kasan_reset_tag() before accessing the freed memory.
This is safe because defer_free() is part of the allocator itself and is
expected to manipulate freed memory for bookkeeping purposes. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: ensure node page reads complete before f2fs_put_super() finishes
Xfstests generic/335, generic/336 sometimes crash with the following message:
F2FS-fs (dm-0): detect filesystem reference count leak during umount, type: 9, count: 1
------------[ cut here ]------------
kernel BUG at fs/f2fs/super.c:1939!
Oops: invalid opcode: 0000 [#1] SMP NOPTI
CPU: 1 UID: 0 PID: 609351 Comm: umount Tainted: G W 6.17.0-rc5-xfstests-g9dd1835ecda5 #1 PREEMPT(none)
Tainted: [W]=WARN
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
RIP: 0010:f2fs_put_super+0x3b3/0x3c0
Call Trace:
<TASK>
generic_shutdown_super+0x7e/0x190
kill_block_super+0x1a/0x40
kill_f2fs_super+0x9d/0x190
deactivate_locked_super+0x30/0xb0
cleanup_mnt+0xba/0x150
task_work_run+0x5c/0xa0
exit_to_user_mode_loop+0xb7/0xc0
do_syscall_64+0x1ae/0x1c0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
</TASK>
---[ end trace 0000000000000000 ]---
It appears that sometimes it is possible that f2fs_put_super() is called before
all node page reads are completed.
Adding a call to f2fs_wait_on_all_pages() for F2FS_RD_NODE fixes the problem. |
| In the Linux kernel, the following vulnerability has been resolved:
fs: PM: Fix reverse check in filesystems_freeze_callback()
The freeze_all_ptr check in filesystems_freeze_callback() introduced by
commit a3f8f8662771 ("power: always freeze efivarfs") is reverse which
quite confusingly causes all file systems to be frozen when
filesystem_freeze_enabled is false.
On my systems it causes the WARN_ON_ONCE() in __set_task_frozen() to
trigger, most likely due to an attempt to freeze a file system that is
not ready for that.
Add a logical negation to the check in question to reverse it as
appropriate. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm: adreno: fix deferencing ifpc_reglist when not declared
On plaforms with an a7xx GPU not supporting IFPC, the ifpc_reglist
if still deferenced in a7xx_patch_pwrup_reglist() which causes
a kernel crash:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008
...
pc : a6xx_hw_init+0x155c/0x1e4c [msm]
lr : a6xx_hw_init+0x9a8/0x1e4c [msm]
...
Call trace:
a6xx_hw_init+0x155c/0x1e4c [msm] (P)
msm_gpu_hw_init+0x58/0x88 [msm]
adreno_load_gpu+0x94/0x1fc [msm]
msm_open+0xe4/0xf4 [msm]
drm_file_alloc+0x1a0/0x2e4 [drm]
drm_client_init+0x7c/0x104 [drm]
drm_fbdev_client_setup+0x94/0xcf0 [drm_client_lib]
drm_client_setup+0xb4/0xd8 [drm_client_lib]
msm_drm_kms_post_init+0x2c/0x3c [msm]
msm_drm_init+0x1a4/0x228 [msm]
msm_drm_bind+0x30/0x3c [msm]
...
Check the validity of ifpc_reglist before deferencing the table
to setup the register values.
Patchwork: https://patchwork.freedesktop.org/patch/688944/ |
| Enclave is a secure JavaScript sandbox designed for safe AI agent code execution. Prior to 2.7.0, there is a critical sandbox escape vulnerability in enclave-vm that allows untrusted, sandboxed JavaScript code to execute arbitrary code in the host Node.js runtime. When a tool invocation fails, enclave-vm exposes a host-side Error object to sandboxed code. This Error object retains its host realm prototype chain, which can be traversed to reach the host Function constructor. An attacker can intentionally trigger a host error, then climb the prototype chain. Using the host Function constructor, arbitrary JavaScript can be compiled and executed in the host context, fully bypassing the sandbox and granting access to sensitive resources such as process.env, filesystem, and network. This breaks enclave-vm’s core security guarantee of isolating untrusted code. This vulnerability is fixed in 2.7.0. |
| Jetpack 11.4 contains a cross-site scripting vulnerability in the contact form module that allows attackers to inject malicious scripts through the post_id parameter. Attackers can craft malicious URLs with script payloads to execute arbitrary JavaScript in victims' browsers when they interact with the contact form page. |
| Zstore, now referred to as Zippy CRM, 6.5.4 contains a reflected cross-site scripting vulnerability that allows attackers to inject malicious scripts through unvalidated input parameters. Attackers can submit crafted payloads in manual insertion points to execute arbitrary JavaScript code in victim's browser context. |
| Emerson PAC Machine Edition 9.80 contains an unquoted service path vulnerability in the TrapiServer service that allows local users to potentially execute code with elevated privileges. Attackers can exploit the unquoted path in the service configuration to inject malicious code that would execute with LocalSystem permissions during service startup. |
| Connectify Hotspot 2018 contains an unquoted service path vulnerability in its ConnectifyService executable that allows local attackers to potentially execute arbitrary code. Attackers can exploit the unquoted path in 'C:\Program Files (x86)\Connectify\ConnectifyService.exe' to inject malicious executables and escalate privileges. |
| Sandboxie-Plus 5.50.2 contains an unquoted service path vulnerability in the SbieSvc Windows service that allows local attackers to potentially execute arbitrary code. Attackers can exploit the unquoted binary path to inject malicious executables that will be run with LocalSystem privileges during service startup. |
| Tdarr 2.00.15 contains an unauthenticated remote code execution vulnerability in its Help terminal that allows attackers to inject and chain arbitrary commands. Attackers can exploit the lack of input filtering by chaining commands like `--help; curl .py | python` to execute remote code without authentication. |
| VIVE Runtime Service 1.0.0.4 contains an unquoted service path vulnerability that allows local users to execute arbitrary code with elevated system privileges. Attackers can exploit the unquoted binary path by placing malicious executables in specific system directories to gain LocalSystem access during service startup. |
| ProtonVPN 1.26.0 contains an unquoted service path vulnerability in its WireGuard service configuration that allows local attackers to potentially execute arbitrary code. Attackers can exploit the unquoted path by placing malicious executables in specific file system locations to gain elevated privileges during service startup. |
| PTPublisher 2.3.4 contains an unquoted service path vulnerability in the PTProtect service that allows local attackers to potentially execute arbitrary code with elevated privileges. Attackers can exploit the unquoted path in 'C:\Program Files (x86)\Primera Technology\PTPublisher\UsbFlashDongleService.exe' to inject malicious executables and gain system-level access. |
| ITeC ITeCProteccioAppServer contains an unquoted service path vulnerability that allows local attackers to execute code with elevated system privileges. Attackers can insert a malicious executable in the service path to gain elevated access during service restart or system reboot. |
| Testa 3.5.1 contains a reflected cross-site scripting vulnerability in the login.php redirect parameter that allows attackers to inject malicious scripts. Attackers can craft a specially encoded payload in the redirect parameter to execute arbitrary JavaScript in victim's browser context. |
| VIAVIWEB Wallpaper Admin 1.0 contains a SQL injection vulnerability that allows attackers to bypass authentication by manipulating login credentials. Attackers can exploit the login page by injecting 'admin' or 1=1-- - payload to gain unauthorized access to the administrative interface. |
| YouPHPTube <= 7.8 contains a cross-site scripting vulnerability that allows attackers to inject malicious scripts through the redirectUri parameter in the signup page. Attackers can craft special signup URLs with embedded script tags to execute arbitrary JavaScript in victims' browsers when they access the signup page. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme: avoid double free special payload
If a discard request needs to be retried, and that retry may fail before
a new special payload is added, a double free will result. Clear the
RQF_SPECIAL_LOAD when the request is cleaned. |