| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A vulnerability was detected in LigeroSmart up to 6.1.26. The impacted element is the function AgentDashboard of the file /otrs/index.pl. Performing a manipulation of the argument Subaction results in cross site scripting. Remote exploitation of the attack is possible. The exploit is now public and may be used. The project was informed of the problem early through an issue report but has not responded yet. |
| A security vulnerability has been detected in LigeroSmart up to 6.1.26. The affected element is an unknown function of the file /otrs/index.pl. Such manipulation of the argument SortBy leads to cross site scripting. The attack may be launched remotely. The exploit has been disclosed publicly and may be used. The project was informed of the problem early through an issue report but has not responded yet. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Prevent excessive number of frames
In this case, the user constructed the parameters with maxpacksize 40
for rate 22050 / pps 1000, and packsize[0] 22 packsize[1] 23. The buffer
size for each data URB is maxpacksize * packets, which in this example
is 40 * 6 = 240; When the user performs a write operation to send audio
data into the ALSA PCM playback stream, the calculated number of frames
is packsize[0] * packets = 264, which exceeds the allocated URB buffer
size, triggering the out-of-bounds (OOB) issue reported by syzbot [1].
Added a check for the number of single data URB frames when calculating
the number of frames to prevent [1].
[1]
BUG: KASAN: slab-out-of-bounds in copy_to_urb+0x261/0x460 sound/usb/pcm.c:1487
Write of size 264 at addr ffff88804337e800 by task syz.0.17/5506
Call Trace:
copy_to_urb+0x261/0x460 sound/usb/pcm.c:1487
prepare_playback_urb+0x953/0x13d0 sound/usb/pcm.c:1611
prepare_outbound_urb+0x377/0xc50 sound/usb/endpoint.c:333 |
| In the Linux kernel, the following vulnerability has been resolved:
nvmet-tcp: fixup hang in nvmet_tcp_listen_data_ready()
When the socket is closed while in TCP_LISTEN a callback is run to
flush all outstanding packets, which in turns calls
nvmet_tcp_listen_data_ready() with the sk_callback_lock held.
So we need to check if we are in TCP_LISTEN before attempting
to get the sk_callback_lock() to avoid a deadlock. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: Set __nocfi on swsusp_arch_resume()
A DABT is reported[1] on an android based system when resume from hiberate.
This happens because swsusp_arch_suspend_exit() is marked with SYM_CODE_*()
and does not have a CFI hash, but swsusp_arch_resume() will attempt to
verify the CFI hash when calling a copy of swsusp_arch_suspend_exit().
Given that there's an existing requirement that the entrypoint to
swsusp_arch_suspend_exit() is the first byte of the .hibernate_exit.text
section, we cannot fix this by marking swsusp_arch_suspend_exit() with
SYM_FUNC_*(). The simplest fix for now is to disable the CFI check in
swsusp_arch_resume().
Mark swsusp_arch_resume() as __nocfi to disable the CFI check.
[1]
[ 22.991934][ T1] Unable to handle kernel paging request at virtual address 0000000109170ffc
[ 22.991934][ T1] Mem abort info:
[ 22.991934][ T1] ESR = 0x0000000096000007
[ 22.991934][ T1] EC = 0x25: DABT (current EL), IL = 32 bits
[ 22.991934][ T1] SET = 0, FnV = 0
[ 22.991934][ T1] EA = 0, S1PTW = 0
[ 22.991934][ T1] FSC = 0x07: level 3 translation fault
[ 22.991934][ T1] Data abort info:
[ 22.991934][ T1] ISV = 0, ISS = 0x00000007, ISS2 = 0x00000000
[ 22.991934][ T1] CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[ 22.991934][ T1] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[ 22.991934][ T1] [0000000109170ffc] user address but active_mm is swapper
[ 22.991934][ T1] Internal error: Oops: 0000000096000007 [#1] PREEMPT SMP
[ 22.991934][ T1] Dumping ftrace buffer:
[ 22.991934][ T1] (ftrace buffer empty)
[ 22.991934][ T1] Modules linked in:
[ 22.991934][ T1] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 6.6.98-android15-8-g0b1d2aee7fc3-dirty-4k #1 688c7060a825a3ac418fe53881730b355915a419
[ 22.991934][ T1] Hardware name: Unisoc UMS9360-base Board (DT)
[ 22.991934][ T1] pstate: 804000c5 (Nzcv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 22.991934][ T1] pc : swsusp_arch_resume+0x2ac/0x344
[ 22.991934][ T1] lr : swsusp_arch_resume+0x294/0x344
[ 22.991934][ T1] sp : ffffffc08006b960
[ 22.991934][ T1] x29: ffffffc08006b9c0 x28: 0000000000000000 x27: 0000000000000000
[ 22.991934][ T1] x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000820
[ 22.991934][ T1] x23: ffffffd0817e3000 x22: ffffffd0817e3000 x21: 0000000000000000
[ 22.991934][ T1] x20: ffffff8089171000 x19: ffffffd08252c8c8 x18: ffffffc080061058
[ 22.991934][ T1] x17: 00000000529c6ef0 x16: 00000000529c6ef0 x15: 0000000000000004
[ 22.991934][ T1] x14: ffffff8178c88000 x13: 0000000000000006 x12: 0000000000000000
[ 22.991934][ T1] x11: 0000000000000015 x10: 0000000000000001 x9 : ffffffd082533000
[ 22.991934][ T1] x8 : 0000000109171000 x7 : 205b5d3433393139 x6 : 392e32322020205b
[ 22.991934][ T1] x5 : 000000010916f000 x4 : 000000008164b000 x3 : ffffff808a4e0530
[ 22.991934][ T1] x2 : ffffffd08058e784 x1 : 0000000082326000 x0 : 000000010a283000
[ 22.991934][ T1] Call trace:
[ 22.991934][ T1] swsusp_arch_resume+0x2ac/0x344
[ 22.991934][ T1] hibernation_restore+0x158/0x18c
[ 22.991934][ T1] load_image_and_restore+0xb0/0xec
[ 22.991934][ T1] software_resume+0xf4/0x19c
[ 22.991934][ T1] software_resume_initcall+0x34/0x78
[ 22.991934][ T1] do_one_initcall+0xe8/0x370
[ 22.991934][ T1] do_initcall_level+0xc8/0x19c
[ 22.991934][ T1] do_initcalls+0x70/0xc0
[ 22.991934][ T1] do_basic_setup+0x1c/0x28
[ 22.991934][ T1] kernel_init_freeable+0xe0/0x148
[ 22.991934][ T1] kernel_init+0x20/0x1a8
[ 22.991934][ T1] ret_from_fork+0x10/0x20
[ 22.991934][ T1] Code: a9400a61 f94013e0 f9438923 f9400a64 (b85fc110)
[catalin.marinas@arm.com: commit log updated by Mark Rutland] |
| There's a vulnerability in podman where an attacker may use the kube play command to overwrite host files when the kube file container a Secrete or a ConfigMap volume mount and such volume contains a symbolic link to a host file path. In a successful attack, the attacker can only control the target file to be overwritten but not the content to be written into the file.
Binary-Affected: podman
Upstream-version-introduced: v4.0.0
Upstream-version-fixed: v5.6.1 |
| In the Linux kernel, the following vulnerability has been resolved:
HID: Intel-thc-hid: Intel-thc: Add safety check for reading DMA buffer
Add DMA buffer readiness check before reading DMA buffer to avoid
unexpected NULL pointer accessing. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: target: iscsi: Fix use-after-free in iscsit_dec_session_usage_count()
In iscsit_dec_session_usage_count(), the function calls complete() while
holding the sess->session_usage_lock. Similar to the connection usage count
logic, the waiter signaled by complete() (e.g., in the session release
path) may wake up and free the iscsit_session structure immediately.
This creates a race condition where the current thread may attempt to
execute spin_unlock_bh() on a session structure that has already been
deallocated, resulting in a KASAN slab-use-after-free.
To resolve this, release the session_usage_lock before calling complete()
to ensure all dereferences of the sess pointer are finished before the
waiter is allowed to proceed with deallocation. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: aloop: Fix racy access at PCM trigger
The PCM trigger callback of aloop driver tries to check the PCM state
and stop the stream of the tied substream in the corresponding cable.
Since both check and stop operations are performed outside the cable
lock, this may result in UAF when a program attempts to trigger
frequently while opening/closing the tied stream, as spotted by
fuzzers.
For addressing the UAF, this patch changes two things:
- It covers the most of code in loopback_check_format() with
cable->lock spinlock, and add the proper NULL checks. This avoids
already some racy accesses.
- In addition, now we try to check the state of the capture PCM stream
that may be stopped in this function, which was the major pain point
leading to UAF. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: sync read disk super and set block size
When the user performs a btrfs mount, the block device is not set
correctly. The user sets the block size of the block device to 0x4000
by executing the BLKBSZSET command.
Since the block size change also changes the mapping->flags value, this
further affects the result of the mapping_min_folio_order() calculation.
Let's analyze the following two scenarios:
Scenario 1: Without executing the BLKBSZSET command, the block size is
0x1000, and mapping_min_folio_order() returns 0;
Scenario 2: After executing the BLKBSZSET command, the block size is
0x4000, and mapping_min_folio_order() returns 2.
do_read_cache_folio() allocates a folio before the BLKBSZSET command
is executed. This results in the allocated folio having an order value
of 0. Later, after BLKBSZSET is executed, the block size increases to
0x4000, and the mapping_min_folio_order() calculation result becomes 2.
This leads to two undesirable consequences:
1. filemap_add_folio() triggers a VM_BUG_ON_FOLIO(folio_order(folio) <
mapping_min_folio_order(mapping)) assertion.
2. The syzbot report [1] shows a null pointer dereference in
create_empty_buffers() due to a buffer head allocation failure.
Synchronization should be established based on the inode between the
BLKBSZSET command and read cache page to prevent inconsistencies in
block size or mapping flags before and after folio allocation.
[1]
KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
RIP: 0010:create_empty_buffers+0x4d/0x480 fs/buffer.c:1694
Call Trace:
folio_create_buffers+0x109/0x150 fs/buffer.c:1802
block_read_full_folio+0x14c/0x850 fs/buffer.c:2403
filemap_read_folio+0xc8/0x2a0 mm/filemap.c:2496
do_read_cache_folio+0x266/0x5c0 mm/filemap.c:4096
do_read_cache_page mm/filemap.c:4162 [inline]
read_cache_page_gfp+0x29/0x120 mm/filemap.c:4195
btrfs_read_disk_super+0x192/0x500 fs/btrfs/volumes.c:1367 |
| In the Linux kernel, the following vulnerability has been resolved:
HID: i2c-hid: fix potential buffer overflow in i2c_hid_get_report()
`i2c_hid_xfer` is used to read `recv_len + sizeof(__le16)` bytes of data
into `ihid->rawbuf`.
The former can come from the userspace in the hidraw driver and is only
bounded by HID_MAX_BUFFER_SIZE(16384) by default (unless we also set
`max_buffer_size` field of `struct hid_ll_driver` which we do not).
The latter has size determined at runtime by the maximum size of
different report types you could receive on any particular device and
can be a much smaller value.
Fix this by truncating `recv_len` to `ihid->bufsize - sizeof(__le16)`.
The impact is low since access to hidraw devices requires root. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: do not strictly require dirty metadata threshold for metadata writepages
[BUG]
There is an internal report that over 1000 processes are
waiting at the io_schedule_timeout() of balance_dirty_pages(), causing
a system hang and trigger a kernel coredump.
The kernel is v6.4 kernel based, but the root problem still applies to
any upstream kernel before v6.18.
[CAUSE]
From Jan Kara for his wisdom on the dirty page balance behavior first.
This cgroup dirty limit was what was actually playing the role here
because the cgroup had only a small amount of memory and so the dirty
limit for it was something like 16MB.
Dirty throttling is responsible for enforcing that nobody can dirty
(significantly) more dirty memory than there's dirty limit. Thus when
a task is dirtying pages it periodically enters into balance_dirty_pages()
and we let it sleep there to slow down the dirtying.
When the system is over dirty limit already (either globally or within
a cgroup of the running task), we will not let the task exit from
balance_dirty_pages() until the number of dirty pages drops below the
limit.
So in this particular case, as I already mentioned, there was a cgroup
with relatively small amount of memory and as a result with dirty limit
set at 16MB. A task from that cgroup has dirtied about 28MB worth of
pages in btrfs btree inode and these were practically the only dirty
pages in that cgroup.
So that means the only way to reduce the dirty pages of that cgroup is
to writeback the dirty pages of btrfs btree inode, and only after that
those processes can exit balance_dirty_pages().
Now back to the btrfs part, btree_writepages() is responsible for
writing back dirty btree inode pages.
The problem here is, there is a btrfs internal threshold that if the
btree inode's dirty bytes are below the 32M threshold, it will not
do any writeback.
This behavior is to batch as much metadata as possible so we won't write
back those tree blocks and then later re-COW them again for another
modification.
This internal 32MiB is higher than the existing dirty page size (28MiB),
meaning no writeback will happen, causing a deadlock between btrfs and
cgroup:
- Btrfs doesn't want to write back btree inode until more dirty pages
- Cgroup/MM doesn't want more dirty pages for btrfs btree inode
Thus any process touching that btree inode is put into sleep until
the number of dirty pages is reduced.
Thanks Jan Kara a lot for the analysis of the root cause.
[ENHANCEMENT]
Since kernel commit b55102826d7d ("btrfs: set AS_KERNEL_FILE on the
btree_inode"), btrfs btree inode pages will only be charged to the root
cgroup which should have a much larger limit than btrfs' 32MiB
threshold.
So it should not affect newer kernels.
But for all current LTS kernels, they are all affected by this problem,
and backporting the whole AS_KERNEL_FILE may not be a good idea.
Even for newer kernels I still think it's a good idea to get
rid of the internal threshold at btree_writepages(), since for most cases
cgroup/MM has a better view of full system memory usage than btrfs' fixed
threshold.
For internal callers using btrfs_btree_balance_dirty() since that
function is already doing internal threshold check, we don't need to
bother them.
But for external callers of btree_writepages(), just respect their
requests and write back whatever they want, ignoring the internal
btrfs threshold to avoid such deadlock on btree inode dirty page
balancing. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/io-wq: check IO_WQ_BIT_EXIT inside work run loop
Currently this is checked before running the pending work. Normally this
is quite fine, as work items either end up blocking (which will create a
new worker for other items), or they complete fairly quickly. But syzbot
reports an issue where io-wq takes seemingly forever to exit, and with a
bit of debugging, this turns out to be because it queues a bunch of big
(2GB - 4096b) reads with a /dev/msr* file. Since this file type doesn't
support ->read_iter(), loop_rw_iter() ends up handling them. Each read
returns 16MB of data read, which takes 20 (!!) seconds. With a bunch of
these pending, processing the whole chain can take a long time. Easily
longer than the syzbot uninterruptible sleep timeout of 140 seconds.
This then triggers a complaint off the io-wq exit path:
INFO: task syz.4.135:6326 blocked for more than 143 seconds.
Not tainted syzkaller #0
Blocked by coredump.
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:syz.4.135 state:D stack:26824 pid:6326 tgid:6324 ppid:5957 task_flags:0x400548 flags:0x00080000
Call Trace:
<TASK>
context_switch kernel/sched/core.c:5256 [inline]
__schedule+0x1139/0x6150 kernel/sched/core.c:6863
__schedule_loop kernel/sched/core.c:6945 [inline]
schedule+0xe7/0x3a0 kernel/sched/core.c:6960
schedule_timeout+0x257/0x290 kernel/time/sleep_timeout.c:75
do_wait_for_common kernel/sched/completion.c:100 [inline]
__wait_for_common+0x2fc/0x4e0 kernel/sched/completion.c:121
io_wq_exit_workers io_uring/io-wq.c:1328 [inline]
io_wq_put_and_exit+0x271/0x8a0 io_uring/io-wq.c:1356
io_uring_clean_tctx+0x10d/0x190 io_uring/tctx.c:203
io_uring_cancel_generic+0x69c/0x9a0 io_uring/cancel.c:651
io_uring_files_cancel include/linux/io_uring.h:19 [inline]
do_exit+0x2ce/0x2bd0 kernel/exit.c:911
do_group_exit+0xd3/0x2a0 kernel/exit.c:1112
get_signal+0x2671/0x26d0 kernel/signal.c:3034
arch_do_signal_or_restart+0x8f/0x7e0 arch/x86/kernel/signal.c:337
__exit_to_user_mode_loop kernel/entry/common.c:41 [inline]
exit_to_user_mode_loop+0x8c/0x540 kernel/entry/common.c:75
__exit_to_user_mode_prepare include/linux/irq-entry-common.h:226 [inline]
syscall_exit_to_user_mode_prepare include/linux/irq-entry-common.h:256 [inline]
syscall_exit_to_user_mode_work include/linux/entry-common.h:159 [inline]
syscall_exit_to_user_mode include/linux/entry-common.h:194 [inline]
do_syscall_64+0x4ee/0xf80 arch/x86/entry/syscall_64.c:100
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7fa02738f749
RSP: 002b:00007fa0281ae0e8 EFLAGS: 00000246 ORIG_RAX: 00000000000000ca
RAX: fffffffffffffe00 RBX: 00007fa0275e6098 RCX: 00007fa02738f749
RDX: 0000000000000000 RSI: 0000000000000080 RDI: 00007fa0275e6098
RBP: 00007fa0275e6090 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 00007fa0275e6128 R14: 00007fff14e4fcb0 R15: 00007fff14e4fd98
There's really nothing wrong here, outside of processing these reads
will take a LONG time. However, we can speed up the exit by checking the
IO_WQ_BIT_EXIT inside the io_worker_handle_work() loop, as syzbot will
exit the ring after queueing up all of these reads. Then once the first
item is processed, io-wq will simply cancel the rest. That should avoid
syzbot running into this complaint again. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: ocb: skip rx_no_sta when interface is not joined
ieee80211_ocb_rx_no_sta() assumes a valid channel context, which is only
present after JOIN_OCB.
RX may run before JOIN_OCB is executed, in which case the OCB interface
is not operational. Skip RX peer handling when the interface is not
joined to avoid warnings in the RX path. |
| In the Linux kernel, the following vulnerability has been resolved:
smb/server: fix refcount leak in smb2_open()
When ksmbd_vfs_getattr() fails, the reference count of ksmbd_file
must be released. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: wlcore: ensure skb headroom before skb_push
This avoids occasional skb_under_panic Oops from wl1271_tx_work. In this case, headroom is
less than needed (typically 110 - 94 = 16 bytes). |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: mmp_pdma: Fix race condition in mmp_pdma_residue()
Add proper locking in mmp_pdma_residue() to prevent use-after-free when
accessing descriptor list and descriptor contents.
The race occurs when multiple threads call tx_status() while the tasklet
on another CPU is freeing completed descriptors:
CPU 0 CPU 1
----- -----
mmp_pdma_tx_status()
mmp_pdma_residue()
-> NO LOCK held
list_for_each_entry(sw, ..)
DMA interrupt
dma_do_tasklet()
-> spin_lock(&desc_lock)
list_move(sw->node, ...)
spin_unlock(&desc_lock)
| dma_pool_free(sw) <- FREED!
-> access sw->desc <- UAF!
This issue can be reproduced when running dmatest on the same channel with
multiple threads (threads_per_chan > 1).
Fix by protecting the chain_running list iteration and descriptor access
with the chan->desc_lock spinlock. |
| In the Linux kernel, the following vulnerability has been resolved:
smb/server: call ksmbd_session_rpc_close() on error path in create_smb2_pipe()
When ksmbd_iov_pin_rsp() fails, we should call ksmbd_session_rpc_close(). |
| In the Linux kernel, the following vulnerability has been resolved:
smb/server: fix refcount leak in parse_durable_handle_context()
When the command is a replay operation and -ENOEXEC is returned,
the refcount of ksmbd_file must be released. |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: Sanitize syscall table indexing under speculation
The syscall number is a user-controlled value used to index into the
syscall table. Use array_index_nospec() to clamp this value after the
bounds check to prevent speculative out-of-bounds access and subsequent
data leakage via cache side channels. |