| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A flaw was found in libssh when using the ChaCha20 cipher with the OpenSSL library. If an attacker manages to exhaust the heap space, this error is not detected and may lead to libssh using a partially initialized cipher context. This occurs because the OpenSSL error code returned aliases with the SSH_OK code, resulting in libssh not properly detecting the error returned by the OpenSSL library. This issue can lead to undefined behavior, including compromised data confidentiality and integrity or crashes. |
| A flaw was found in WebKitGTK. Processing malicious web content can cause an unexpected process crash due to improper memory handling. |
| A flaw was found in WebKitGTK. This vulnerability allows remote, user-assisted information disclosure that can reveal any file the user is permitted to read via abusing the file drag-and-drop mechanism where WebKitGTK does not verify that drag operations originate from outside the browser. |
| A flaw was found in WebKitGTK and WPE WebKit. This vulnerability allows an out-of-bounds read and integer underflow, leading to a UIProcess crash (DoS) via a crafted payload to the GLib remote inspector server. |
| A flaw was found in the asynchronous message queue handling of the libsoup library, widely used by GNOME and WebKit-based applications to manage HTTP/2 communications. When network operations are aborted at specific timing intervals, an internal message queue item may be freed twice due to missing state synchronization. This leads to a use-after-free memory access, potentially crashing the affected application. Attackers could exploit this behavior remotely by triggering specific HTTP/2 read and cancel sequences, resulting in a denial-of-service condition. |
| A flaw was found in QEMU. If the QIOChannelWebsock object is freed while it is waiting to complete a handshake, a GSource is leaked. This can lead to the callback firing later on and triggering a use-after-free in the use of the channel. This can be abused by a malicious client with network access to the VNC WebSocket port to cause a denial of service during the WebSocket handshake prior to the VNC client authentication. |
| A path traversal vulnerability exists in rsync. It stems from behavior enabled by the `--inc-recursive` option, a default-enabled option for many client options and can be enabled by the server even if not explicitly enabled by the client. When using the `--inc-recursive` option, a lack of proper symlink verification coupled with deduplication checks occurring on a per-file-list basis could allow a server to write files outside of the client's intended destination directory. A malicious server could write malicious files to arbitrary locations named after valid directories/paths on the client. |
| In the Linux kernel, the following vulnerability has been resolved:
ACPI: LPIT: Avoid u32 multiplication overflow
In lpit_update_residency() there is a possibility of overflow
in multiplication, if tsc_khz is large enough (> UINT_MAX/1000).
Change multiplication to mul_u32_u32().
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: discard table flag update with pending basechain deletion
Hook unregistration is deferred to the commit phase, same occurs with
hook updates triggered by the table dormant flag. When both commands are
combined, this results in deleting a basechain while leaving its hook
still registered in the core. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: reject new basechain after table flag update
When dormant flag is toggled, hooks are disabled in the commit phase by
iterating over current chains in table (existing and new).
The following configuration allows for an inconsistent state:
add table x
add chain x y { type filter hook input priority 0; }
add table x { flags dormant; }
add chain x w { type filter hook input priority 1; }
which triggers the following warning when trying to unregister chain w
which is already unregistered.
[ 127.322252] WARNING: CPU: 7 PID: 1211 at net/netfilter/core.c:50 1 __nf_unregister_net_hook+0x21a/0x260
[...]
[ 127.322519] Call Trace:
[ 127.322521] <TASK>
[ 127.322524] ? __warn+0x9f/0x1a0
[ 127.322531] ? __nf_unregister_net_hook+0x21a/0x260
[ 127.322537] ? report_bug+0x1b1/0x1e0
[ 127.322545] ? handle_bug+0x3c/0x70
[ 127.322552] ? exc_invalid_op+0x17/0x40
[ 127.322556] ? asm_exc_invalid_op+0x1a/0x20
[ 127.322563] ? kasan_save_free_info+0x3b/0x60
[ 127.322570] ? __nf_unregister_net_hook+0x6a/0x260
[ 127.322577] ? __nf_unregister_net_hook+0x21a/0x260
[ 127.322583] ? __nf_unregister_net_hook+0x6a/0x260
[ 127.322590] ? __nf_tables_unregister_hook+0x8a/0xe0 [nf_tables]
[ 127.322655] nft_table_disable+0x75/0xf0 [nf_tables]
[ 127.322717] nf_tables_commit+0x2571/0x2620 [nf_tables] |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: properly terminate timers for kernel sockets
We had various syzbot reports about tcp timers firing after
the corresponding netns has been dismantled.
Fortunately Josef Bacik could trigger the issue more often,
and could test a patch I wrote two years ago.
When TCP sockets are closed, we call inet_csk_clear_xmit_timers()
to 'stop' the timers.
inet_csk_clear_xmit_timers() can be called from any context,
including when socket lock is held.
This is the reason it uses sk_stop_timer(), aka del_timer().
This means that ongoing timers might finish much later.
For user sockets, this is fine because each running timer
holds a reference on the socket, and the user socket holds
a reference on the netns.
For kernel sockets, we risk that the netns is freed before
timer can complete, because kernel sockets do not hold
reference on the netns.
This patch adds inet_csk_clear_xmit_timers_sync() function
that using sk_stop_timer_sync() to make sure all timers
are terminated before the kernel socket is released.
Modules using kernel sockets close them in their netns exit()
handler.
Also add sock_not_owned_by_me() helper to get LOCKDEP
support : inet_csk_clear_xmit_timers_sync() must not be called
while socket lock is held.
It is very possible we can revert in the future commit
3a58f13a881e ("net: rds: acquire refcount on TCP sockets")
which attempted to solve the issue in rds only.
(net/smc/af_smc.c and net/mptcp/subflow.c have similar code)
We probably can remove the check_net() tests from
tcp_out_of_resources() and __tcp_close() in the future. |
| In the Linux kernel, the following vulnerability has been resolved:
net/smc: reduce rtnl pressure in smc_pnet_create_pnetids_list()
Many syzbot reports show extreme rtnl pressure, and many of them hint
that smc acquires rtnl in netns creation for no good reason [1]
This patch returns early from smc_pnet_net_init()
if there is no netdevice yet.
I am not even sure why smc_pnet_create_pnetids_list() even exists,
because smc_pnet_netdev_event() is also calling
smc_pnet_add_base_pnetid() when handling NETDEV_UP event.
[1] extract of typical syzbot reports
2 locks held by syz-executor.3/12252:
#0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline]
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878
2 locks held by syz-executor.4/12253:
#0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline]
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878
2 locks held by syz-executor.1/12257:
#0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline]
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878
2 locks held by syz-executor.2/12261:
#0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline]
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878
2 locks held by syz-executor.0/12265:
#0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline]
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878
2 locks held by syz-executor.3/12268:
#0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline]
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878
2 locks held by syz-executor.4/12271:
#0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline]
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878
2 locks held by syz-executor.1/12274:
#0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline]
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878
2 locks held by syz-executor.2/12280:
#0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline]
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878 |
| In the Linux kernel, the following vulnerability has been resolved:
VMCI: Fix memcpy() run-time warning in dg_dispatch_as_host()
Syzkaller hit 'WARNING in dg_dispatch_as_host' bug.
memcpy: detected field-spanning write (size 56) of single field "&dg_info->msg"
at drivers/misc/vmw_vmci/vmci_datagram.c:237 (size 24)
WARNING: CPU: 0 PID: 1555 at drivers/misc/vmw_vmci/vmci_datagram.c:237
dg_dispatch_as_host+0x88e/0xa60 drivers/misc/vmw_vmci/vmci_datagram.c:237
Some code commentry, based on my understanding:
544 #define VMCI_DG_SIZE(_dg) (VMCI_DG_HEADERSIZE + (size_t)(_dg)->payload_size)
/// This is 24 + payload_size
memcpy(&dg_info->msg, dg, dg_size);
Destination = dg_info->msg ---> this is a 24 byte
structure(struct vmci_datagram)
Source = dg --> this is a 24 byte structure (struct vmci_datagram)
Size = dg_size = 24 + payload_size
{payload_size = 56-24 =32} -- Syzkaller managed to set payload_size to 32.
35 struct delayed_datagram_info {
36 struct datagram_entry *entry;
37 struct work_struct work;
38 bool in_dg_host_queue;
39 /* msg and msg_payload must be together. */
40 struct vmci_datagram msg;
41 u8 msg_payload[];
42 };
So those extra bytes of payload are copied into msg_payload[], a run time
warning is seen while fuzzing with Syzkaller.
One possible way to fix the warning is to split the memcpy() into
two parts -- one -- direct assignment of msg and second taking care of payload.
Gustavo quoted:
"Under FORTIFY_SOURCE we should not copy data across multiple members
in a structure." |
| In the Linux kernel, the following vulnerability has been resolved:
drm/client: Fully protect modes[] with dev->mode_config.mutex
The modes[] array contains pointers to modes on the connectors'
mode lists, which are protected by dev->mode_config.mutex.
Thus we need to extend modes[] the same protection or by the
time we use it the elements may already be pointing to
freed/reused memory. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ena: Fix incorrect descriptor free behavior
ENA has two types of TX queues:
- queues which only process TX packets arriving from the network stack
- queues which only process TX packets forwarded to it by XDP_REDIRECT
or XDP_TX instructions
The ena_free_tx_bufs() cycles through all descriptors in a TX queue
and unmaps + frees every descriptor that hasn't been acknowledged yet
by the device (uncompleted TX transactions).
The function assumes that the processed TX queue is necessarily from
the first category listed above and ends up using napi_consume_skb()
for descriptors belonging to an XDP specific queue.
This patch solves a bug in which, in case of a VF reset, the
descriptors aren't freed correctly, leading to crashes. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: complete validation of user input
In my recent commit, I missed that do_replace() handlers
use copy_from_sockptr() (which I fixed), followed
by unsafe copy_from_sockptr_offset() calls.
In all functions, we can perform the @optlen validation
before even calling xt_alloc_table_info() with the following
check:
if ((u64)optlen < (u64)tmp.size + sizeof(tmp))
return -EINVAL; |
| In the Linux kernel, the following vulnerability has been resolved:
i40e: Do not use WQ_MEM_RECLAIM flag for workqueue
Issue reported by customer during SRIOV testing, call trace:
When both i40e and the i40iw driver are loaded, a warning
in check_flush_dependency is being triggered. This seems
to be because of the i40e driver workqueue is allocated with
the WQ_MEM_RECLAIM flag, and the i40iw one is not.
Similar error was encountered on ice too and it was fixed by
removing the flag. Do the same for i40e too.
[Feb 9 09:08] ------------[ cut here ]------------
[ +0.000004] workqueue: WQ_MEM_RECLAIM i40e:i40e_service_task [i40e] is
flushing !WQ_MEM_RECLAIM infiniband:0x0
[ +0.000060] WARNING: CPU: 0 PID: 937 at kernel/workqueue.c:2966
check_flush_dependency+0x10b/0x120
[ +0.000007] Modules linked in: snd_seq_dummy snd_hrtimer snd_seq
snd_timer snd_seq_device snd soundcore nls_utf8 cifs cifs_arc4
nls_ucs2_utils rdma_cm iw_cm ib_cm cifs_md4 dns_resolver netfs qrtr
rfkill sunrpc vfat fat intel_rapl_msr intel_rapl_common irdma
intel_uncore_frequency intel_uncore_frequency_common ice ipmi_ssif
isst_if_common skx_edac nfit libnvdimm x86_pkg_temp_thermal
intel_powerclamp gnss coretemp ib_uverbs rapl intel_cstate ib_core
iTCO_wdt iTCO_vendor_support acpi_ipmi mei_me ipmi_si intel_uncore
ioatdma i2c_i801 joydev pcspkr mei ipmi_devintf lpc_ich
intel_pch_thermal i2c_smbus ipmi_msghandler acpi_power_meter acpi_pad
xfs libcrc32c ast sd_mod drm_shmem_helper t10_pi drm_kms_helper sg ixgbe
drm i40e ahci crct10dif_pclmul libahci crc32_pclmul igb crc32c_intel
libata ghash_clmulni_intel i2c_algo_bit mdio dca wmi dm_mirror
dm_region_hash dm_log dm_mod fuse
[ +0.000050] CPU: 0 PID: 937 Comm: kworker/0:3 Kdump: loaded Not
tainted 6.8.0-rc2-Feb-net_dev-Qiueue-00279-gbd43c5687e05 #1
[ +0.000003] Hardware name: Intel Corporation S2600BPB/S2600BPB, BIOS
SE5C620.86B.02.01.0013.121520200651 12/15/2020
[ +0.000001] Workqueue: i40e i40e_service_task [i40e]
[ +0.000024] RIP: 0010:check_flush_dependency+0x10b/0x120
[ +0.000003] Code: ff 49 8b 54 24 18 48 8d 8b b0 00 00 00 49 89 e8 48
81 c6 b0 00 00 00 48 c7 c7 b0 97 fa 9f c6 05 8a cc 1f 02 01 e8 35 b3 fd
ff <0f> 0b e9 10 ff ff ff 80 3d 78 cc 1f 02 00 75 94 e9 46 ff ff ff 90
[ +0.000002] RSP: 0018:ffffbd294976bcf8 EFLAGS: 00010282
[ +0.000002] RAX: 0000000000000000 RBX: ffff94d4c483c000 RCX:
0000000000000027
[ +0.000001] RDX: ffff94d47f620bc8 RSI: 0000000000000001 RDI:
ffff94d47f620bc0
[ +0.000001] RBP: 0000000000000000 R08: 0000000000000000 R09:
00000000ffff7fff
[ +0.000001] R10: ffffbd294976bb98 R11: ffffffffa0be65e8 R12:
ffff94c5451ea180
[ +0.000001] R13: ffff94c5ab5e8000 R14: ffff94c5c20b6e05 R15:
ffff94c5f1330ab0
[ +0.000001] FS: 0000000000000000(0000) GS:ffff94d47f600000(0000)
knlGS:0000000000000000
[ +0.000002] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ +0.000001] CR2: 00007f9e6f1fca70 CR3: 0000000038e20004 CR4:
00000000007706f0
[ +0.000000] DR0: 0000000000000000 DR1: 0000000000000000 DR2:
0000000000000000
[ +0.000001] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7:
0000000000000400
[ +0.000001] PKRU: 55555554
[ +0.000001] Call Trace:
[ +0.000001] <TASK>
[ +0.000002] ? __warn+0x80/0x130
[ +0.000003] ? check_flush_dependency+0x10b/0x120
[ +0.000002] ? report_bug+0x195/0x1a0
[ +0.000005] ? handle_bug+0x3c/0x70
[ +0.000003] ? exc_invalid_op+0x14/0x70
[ +0.000002] ? asm_exc_invalid_op+0x16/0x20
[ +0.000006] ? check_flush_dependency+0x10b/0x120
[ +0.000002] ? check_flush_dependency+0x10b/0x120
[ +0.000002] __flush_workqueue+0x126/0x3f0
[ +0.000015] ib_cache_cleanup_one+0x1c/0xe0 [ib_core]
[ +0.000056] __ib_unregister_device+0x6a/0xb0 [ib_core]
[ +0.000023] ib_unregister_device_and_put+0x34/0x50 [ib_core]
[ +0.000020] i40iw_close+0x4b/0x90 [irdma]
[ +0.000022] i40e_notify_client_of_netdev_close+0x54/0xc0 [i40e]
[ +0.000035] i40e_service_task+0x126/0x190 [i40e]
[ +0.000024] process_one_work+0x174/0x340
[ +0.000003] worker_th
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: honor table dormant flag from netdev release event path
Check for table dormant flag otherwise netdev release event path tries
to unregister an already unregistered hook.
[524854.857999] ------------[ cut here ]------------
[524854.858010] WARNING: CPU: 0 PID: 3386599 at net/netfilter/core.c:501 __nf_unregister_net_hook+0x21a/0x260
[...]
[524854.858848] CPU: 0 PID: 3386599 Comm: kworker/u32:2 Not tainted 6.9.0-rc3+ #365
[524854.858869] Workqueue: netns cleanup_net
[524854.858886] RIP: 0010:__nf_unregister_net_hook+0x21a/0x260
[524854.858903] Code: 24 e8 aa 73 83 ff 48 63 43 1c 83 f8 01 0f 85 3d ff ff ff e8 98 d1 f0 ff 48 8b 3c 24 e8 8f 73 83 ff 48 63 43 1c e9 26 ff ff ff <0f> 0b 48 83 c4 18 48 c7 c7 00 68 e9 82 5b 5d 41 5c 41 5d 41 5e 41
[524854.858914] RSP: 0018:ffff8881e36d79e0 EFLAGS: 00010246
[524854.858926] RAX: 0000000000000000 RBX: ffff8881339ae790 RCX: ffffffff81ba524a
[524854.858936] RDX: dffffc0000000000 RSI: 0000000000000008 RDI: ffff8881c8a16438
[524854.858945] RBP: ffff8881c8a16438 R08: 0000000000000001 R09: ffffed103c6daf34
[524854.858954] R10: ffff8881e36d79a7 R11: 0000000000000000 R12: 0000000000000005
[524854.858962] R13: ffff8881c8a16000 R14: 0000000000000000 R15: ffff8881351b5a00
[524854.858971] FS: 0000000000000000(0000) GS:ffff888390800000(0000) knlGS:0000000000000000
[524854.858982] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[524854.858991] CR2: 00007fc9be0f16f4 CR3: 00000001437cc004 CR4: 00000000001706f0
[524854.859000] Call Trace:
[524854.859006] <TASK>
[524854.859013] ? __warn+0x9f/0x1a0
[524854.859027] ? __nf_unregister_net_hook+0x21a/0x260
[524854.859044] ? report_bug+0x1b1/0x1e0
[524854.859060] ? handle_bug+0x3c/0x70
[524854.859071] ? exc_invalid_op+0x17/0x40
[524854.859083] ? asm_exc_invalid_op+0x1a/0x20
[524854.859100] ? __nf_unregister_net_hook+0x6a/0x260
[524854.859116] ? __nf_unregister_net_hook+0x21a/0x260
[524854.859135] nf_tables_netdev_event+0x337/0x390 [nf_tables]
[524854.859304] ? __pfx_nf_tables_netdev_event+0x10/0x10 [nf_tables]
[524854.859461] ? packet_notifier+0xb3/0x360
[524854.859476] ? _raw_spin_unlock_irqrestore+0x11/0x40
[524854.859489] ? dcbnl_netdevice_event+0x35/0x140
[524854.859507] ? __pfx_nf_tables_netdev_event+0x10/0x10 [nf_tables]
[524854.859661] notifier_call_chain+0x7d/0x140
[524854.859677] unregister_netdevice_many_notify+0x5e1/0xae0 |
| In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum_acl_tcam: Fix incorrect list API usage
Both the function that migrates all the chunks within a region and the
function that migrates all the entries within a chunk call
list_first_entry() on the respective lists without checking that the
lists are not empty. This is incorrect usage of the API, which leads to
the following warning [1].
Fix by returning if the lists are empty as there is nothing to migrate
in this case.
[1]
WARNING: CPU: 0 PID: 6437 at drivers/net/ethernet/mellanox/mlxsw/spectrum_acl_tcam.c:1266 mlxsw_sp_acl_tcam_vchunk_migrate_all+0x1f1/0>
Modules linked in:
CPU: 0 PID: 6437 Comm: kworker/0:37 Not tainted 6.9.0-rc3-custom-00883-g94a65f079ef6 #39
Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019
Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work
RIP: 0010:mlxsw_sp_acl_tcam_vchunk_migrate_all+0x1f1/0x2c0
[...]
Call Trace:
<TASK>
mlxsw_sp_acl_tcam_vregion_rehash_work+0x6c/0x4a0
process_one_work+0x151/0x370
worker_thread+0x2cb/0x3e0
kthread+0xd0/0x100
ret_from_fork+0x34/0x50
ret_from_fork_asm+0x1a/0x30
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum_acl_tcam: Fix warning during rehash
As previously explained, the rehash delayed work migrates filters from
one region to another. This is done by iterating over all chunks (all
the filters with the same priority) in the region and in each chunk
iterating over all the filters.
When the work runs out of credits it stores the current chunk and entry
as markers in the per-work context so that it would know where to resume
the migration from the next time the work is scheduled.
Upon error, the chunk marker is reset to NULL, but without resetting the
entry markers despite being relative to it. This can result in migration
being resumed from an entry that does not belong to the chunk being
migrated. In turn, this will eventually lead to a chunk being iterated
over as if it is an entry. Because of how the two structures happen to
be defined, this does not lead to KASAN splats, but to warnings such as
[1].
Fix by creating a helper that resets all the markers and call it from
all the places the currently only reset the chunk marker. For good
measures also call it when starting a completely new rehash. Add a
warning to avoid future cases.
[1]
WARNING: CPU: 7 PID: 1076 at drivers/net/ethernet/mellanox/mlxsw/core_acl_flex_keys.c:407 mlxsw_afk_encode+0x242/0x2f0
Modules linked in:
CPU: 7 PID: 1076 Comm: kworker/7:24 Tainted: G W 6.9.0-rc3-custom-00880-g29e61d91b77b #29
Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019
Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work
RIP: 0010:mlxsw_afk_encode+0x242/0x2f0
[...]
Call Trace:
<TASK>
mlxsw_sp_acl_atcam_entry_add+0xd9/0x3c0
mlxsw_sp_acl_tcam_entry_create+0x5e/0xa0
mlxsw_sp_acl_tcam_vchunk_migrate_all+0x109/0x290
mlxsw_sp_acl_tcam_vregion_rehash_work+0x6c/0x470
process_one_work+0x151/0x370
worker_thread+0x2cb/0x3e0
kthread+0xd0/0x100
ret_from_fork+0x34/0x50
</TASK> |