| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A vulnerability in the access control list (ACL) processing in the egress direction of Cisco IOS XR Software could allow an unauthenticated, remote attacker to bypass a configured ACL.
This vulnerability exists because certain packets are handled incorrectly when they are received on an ingress interface on one line card and destined out of an egress interface on another line card where the egress ACL is configured. An attacker could exploit this vulnerability by attempting to send traffic through an affected device. A successful exploit could allow the attacker to bypass an egress ACL on the affected device.
For more information about this vulnerability, see the section of this advisory.
Cisco has released software updates that address this vulnerability. There are no workarounds that address this vulnerability. |
| A vulnerability in the hybrid access control list (ACL) processing of IPv4 packets in Cisco IOS XR Software could allow an unauthenticated, remote attacker to bypass a configured ACL.
This vulnerability is due to incorrect handling of packets when a specific configuration of the hybrid ACL exists. An attacker could exploit this vulnerability by attempting to send traffic through an affected device. A successful exploit could allow the attacker to bypass a configured ACL on the affected device.
For more information, see the section of this advisory.
Cisco has released software updates that address this vulnerability. There are workarounds that address this vulnerability. |
| A vulnerability in the Layer 3 multicast feature of Cisco IOS XR Software for Cisco ASR 9000 Series Aggregation Services Routers, ASR 9902 Compact High-Performance Routers, and ASR 9903 Compact High-Performance Routers could allow an unauthenticated, remote attacker to cause a line card to reset, resulting in a denial of service (DoS) condition.
This vulnerability is due to the incorrect handling of malformed IPv4 multicast packets that are received on line cards where the interface has either an IPv4 access control list (ACL) or a QoS policy applied. An attacker could exploit this vulnerability by sending crafted IPv4 multicast packets through an affected device. A successful exploit could allow the attacker to cause line card exceptions or a hard reset. Traffic over that line card would be lost while the line card reloads. |
| A vulnerability in the IPv4 access control list (ACL) feature and quality of service (QoS) policy feature of Cisco IOS XR Software for Cisco ASR 9000 Series Aggregation Services Routers, ASR 9902 Compact High-Performance Routers, and ASR 9903 Compact High-Performance Routers could allow an unauthenticated, remote attacker to cause a line card to reset, resulting in a denial of service (DoS) condition.
This vulnerability is due to the incorrect handling of malformed IPv4 packets that are received on line cards where the interface has either an IPv4 ACL or QoS policy applied. An attacker could exploit this vulnerability by sending crafted IPv4 packets through an affected device. A successful exploit could allow the attacker to cause network processor errors, resulting in a reset or shutdown of the network process. Traffic over that line card would be lost while the line card reloads.
Note: This vulnerability has predominantly been observed in Layer 2 VPN (L2VPN) environments where an IPv4 ACL or QoS policy has been applied to the bridge virtual interface. Layer 3 configurations where the interface has either an IPv4 ACL or QoS policy applied are also affected, though the vulnerability has not been observed. |
| A vulnerability in the implementation of the Resource Public Key Infrastructure (RPKI) feature of Cisco IOS XR Software could allow an unauthenticated, remote attacker to cause the Border Gateway Protocol (BGP) process to crash, resulting in a denial of service (DoS) condition.
This vulnerability is due to the incorrect handling of a specific RPKI to Router (RTR) Protocol packet header. An attacker could exploit this vulnerability by compromising the RPKI validator server and sending a specifically crafted RTR packet to an affected device. Alternatively, the attacker could use man-in-the-middle techniques to impersonate the RPKI validator server and send a specifically crafted RTR response packet over the established RTR TCP connection to the affected device. A successful exploit could allow the attacker to cause a DoS condition because the BGP process could constantly restart and BGP routing could become unstable.Cisco has released software updates that address this vulnerability. There are no workarounds that address this vulnerability.This advisory is part of the September 2021 release of the Cisco IOS XR Software Security Advisory Bundled Publication. For a complete list of the advisories and links to them, see . |
| A vulnerability in the Broadband Network Gateway PPP over Ethernet (PPPoE) feature of Cisco IOS XR Software could allow an unauthenticated, adjacent attacker to cause the PPPoE process to continually crash.
This vulnerability exists because the PPPoE feature does not properly handle an error condition within a specific crafted packet sequence. An attacker could exploit this vulnerability by sending a sequence of specific PPPoE packets from controlled customer premises equipment (CPE). A successful exploit could allow the attacker to cause the PPPoE process to continually restart, resulting in a denial of service condition (DoS).Cisco has released software updates that address this vulnerability. There are no workarounds that address this vulnerability.This advisory is part of the September 2022 release of the Cisco IOS XR Software Security Advisory Bundled Publication. For a complete list of the advisories and links to them, see . |
| A vulnerability in confederation implementation for the Border Gateway Protocol (BGP) in Cisco IOS XR Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition.
This vulnerability is due to a memory corruption that occurs when a BGP update is created with an AS_CONFED_SEQUENCE attribute that has 255 autonomous system numbers (AS numbers). An attacker could exploit this vulnerability by sending a crafted BGP update message, or the network could be designed in such a manner that the AS_CONFED_SEQUENCE attribute grows to 255 AS numbers or more. A successful exploit could allow the attacker to cause memory corruption, which may cause the BGP process to restart, resulting in a DoS condition. To exploit this vulnerability, an attacker must control a BGP confederation speaker within the same autonomous system as the victim, or the network must be designed in such a manner that the AS_CONFED_SEQUENCE attribute grows to 255 AS numbers or more. |
| A vulnerability in the Internet Key Exchange version 2 (IKEv2) function of Cisco IOS XR Software could allow an unauthenticated, remote attacker to prevent an affected device from processing any control plane UDP packets.
This vulnerability is due to improper handling of malformed IKEv2 packets. An attacker could exploit this vulnerability by sending malformed IKEv2 packets to an affected device. A successful exploit could allow the attacker to prevent the affected device from processing any control plane UDP packets, resulting in a denial of service (DoS) condition.
Cisco has released software updates that address this vulnerability. There are no workarounds that address this vulnerability. |
| A vulnerability in the CLI of Cisco IOS XR Software could allow an authenticated, local attacker to execute arbitrary commands as root on the underlying operating system of an affected device.
This vulnerability is due to insufficient validation of user arguments that are passed to specific CLI commands. An attacker with a low-privileged account could exploit this vulnerability by using crafted commands at the prompt. A successful exploit could allow the attacker to elevate privileges to root and execute arbitrary commands. |
| A vulnerability in the Two-Way Active Measurement Protocol (TWAMP) server feature of Cisco IOS Software and Cisco IOS XE Software could allow an unauthenticated, remote attacker to cause the affected device to reload, resulting in a denial of service (DoS) condition. For Cisco IOS XR Software, this vulnerability could cause the ipsla_ippm_server process to reload unexpectedly if debugs are enabled.
This vulnerability is due to out-of-bounds array access when processing specially crafted TWAMP control packets. An attacker could exploit this vulnerability by sending crafted TWAMP control packets to an affected device. A successful exploit could allow the attacker to cause the affected device to reload, resulting in a DoS condition.
Note: For Cisco IOS XR Software, only the ipsla_ippm_server process reloads unexpectedly and only when debugs are enabled. The vulnerability details for Cisco IOS XR Software are as follows: Security Impact Rating (SIR): Low CVSS Base Score: 3.7 CVSS Vector: CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:L |
| A vulnerability in the boot process of Cisco IOS XR Software could allow an authenticated, local attacker with high privileges to bypass the Secure Boot functionality and load unverified software on an affected device. To exploit this vulnerability, the attacker must have root-system privileges on the affected device.
This vulnerability is due to insufficient verification of modules in the software load process. An attacker could exploit this vulnerability by manipulating the loaded binaries to bypass some of the integrity checks that are performed during the booting process. A successful exploit could allow the attacker to control the boot configuration, which could enable them to bypass the requirement to run Cisco-signed images or alter the security properties of the running system.
Note: This vulnerability affects Cisco IOS XR Software, not the Secure Boot feature.
Cisco has released software updates that address this vulnerability. There are no workarounds that address this vulnerability. |
| A vulnerability in the Layer 2 Ethernet services of Cisco IOS XR Software could allow an unauthenticated, adjacent attacker to cause the line card network processor to reset, resulting in a denial of service (DoS) condition.
This vulnerability is due to the incorrect handling of specific Ethernet frames that are received on line cards that have the Layer 2 services feature enabled. An attacker could exploit this vulnerability by sending specific Ethernet frames through an affected device. A successful exploit could allow the attacker to cause the ingress interface network processor to reset, resulting in a loss of traffic over the interfaces that are supported by the network processor. Multiple resets of the network processor would cause the line card to reset, resulting in a DoS condition. |
| A vulnerability in the Secure Copy Protocol (SCP) and SFTP feature of Cisco IOS XR Software could allow an authenticated, local attacker to create or overwrite files in a system directory, which could lead to a denial of service (DoS) condition. The attacker would require valid user credentials to perform this attack.
This vulnerability is due to a lack of proper validation of SCP and SFTP CLI input parameters. An attacker could exploit this vulnerability by authenticating to the device and issuing SCP or SFTP CLI commands with specific parameters. A successful exploit could allow the attacker to impact the functionality of the device, which could lead to a DoS condition. The device may need to be manually rebooted to recover.
Note: This vulnerability is exploitable only when a local user invokes SCP or SFTP commands at the Cisco IOS XR CLI. A local user with administrative privileges could exploit this vulnerability remotely. |
| A vulnerability in the DHCP version 4 (DHCPv4) server feature of Cisco IOS XR Software could allow an unauthenticated, remote attacker to trigger a crash of the dhcpd process, resulting in a denial of service (DoS) condition.
This vulnerability exists because certain DHCPv4 messages are improperly validated when they are processed by an affected device. An attacker could exploit this vulnerability by sending a malformed DHCPv4 message to an affected device. A successful exploit could allow the attacker to cause a crash of the dhcpd process. While the dhcpd process is restarting, which may take approximately two minutes, DHCPv4 server services are unavailable on the affected device. This could temporarily prevent network access to clients that join the network during that time period and rely on the DHCPv4 server of the affected device.
Notes:
Only the dhcpd process crashes and eventually restarts automatically. The router does not reload.
This vulnerability only applies to DHCPv4. DHCP version 6 (DHCPv6) is not affected. |
| A vulnerability in the UDP forwarding code of Cisco IOS XR Software could allow an unauthenticated, adjacent attacker to bypass configured management plane protection policies and access the Simple Network Management Plane (SNMP) server of an affected device.
This vulnerability is due to incorrect UDP forwarding programming when using SNMP with management plane protection. An attacker could exploit this vulnerability by attempting to perform an SNMP operation using broadcast as the destination address that could be processed by an affected device that is configured with an SNMP server. A successful exploit could allow the attacker to communicate to the device on the configured SNMP ports. Although an unauthenticated attacker could send UDP datagrams to the configured SNMP port, only an authenticated user can retrieve or modify data using SNMP requests. |
| A vulnerability in the SNMP subsystem of Cisco IOS Software, Cisco IOS XE Software, and Cisco IOS XR Software could allow an authenticated, remote attacker to cause a DoS condition on an affected device.
This vulnerability is due to improper error handling when parsing SNMP requests. An attacker could exploit this vulnerability by sending a crafted SNMP request to an affected device. For Cisco IOS and IOS XE Software, a successful exploit could allow the attacker to cause the device to reload unexpectedly, resulting in a DoS condition. For Cisco IOS XR Software, a successful exploit could allow the attacker to cause the SNMP process to restart, resulting in an interrupted SNMP response from an affected device. Devices that are running Cisco IOS XR Software will not reload.
This vulnerability affects SNMP versions 1, 2c, and 3. To exploit this vulnerability through SNMP v2c or earlier, the attacker must know a valid read-write or read-only SNMP community string for the affected system. To exploit this vulnerability through SNMP v3, the attacker must have valid SNMP user credentials for the affected system. |
| A vulnerability in the PPP over Ethernet (PPPoE) termination feature of Cisco IOS XR Software for Cisco ASR 9000 Series Aggregation Services Routers could allow an unauthenticated, adjacent attacker to crash the ppp_ma process, resulting in a denial of service (DoS) condition.
This vulnerability is due to the improper handling of malformed PPPoE packets that are received on a router that is running Broadband Network Gateway (BNG) functionality with PPPoE termination on a Lightspeed-based or Lightspeed-Plus-based line card. An attacker could exploit this vulnerability by sending a crafted PPPoE packet to an affected line card interface that does not terminate PPPoE. A successful exploit could allow the attacker to crash the ppp_ma process, resulting in a DoS condition for PPPoE traffic across the router. |
| A vulnerability in the CLI of Cisco IOS XR Software could allow an authenticated, local attacker to elevate privileges to the root level. More Information: CSCvb99384. Known Affected Releases: 6.2.1.BASE. Known Fixed Releases: 6.2.11.3i.ROUT 6.2.1.29i.ROUT 6.2.1.26i.ROUT. |
| A vulnerability in the forwarding component of Cisco IOS XR Software for Cisco Network Convergence System (NCS) 5500 Series Routers could allow an authenticated, local attacker to cause the router to stop forwarding data traffic across Traffic Engineering (TE) tunnels, resulting in a denial of service (DoS) condition. More Information: CSCvd16665. Known Affected Releases: 6.2.11.BASE. Known Fixed Releases: 6.1.3 6.1.2 6.3.1.8i.BASE 6.2.11.8i.BASE 6.2.2.9i.BASE 6.1.32.11i.BASE 6.1.31.10i.BASE 6.1.4.3i.BASE. |
| A vulnerability in the Event Management Service daemon (emsd) of Cisco IOS XR routers could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on the affected device. The vulnerability is due to improper handling of gRPC requests. An attacker could exploit this vulnerability by repeatedly sending unauthenticated gRPC requests to the affected device. A successful exploit could allow the attacker to crash the device in such a manner that manual intervention is required to recover. This vulnerability affects all Cisco IOS XR platforms that are running release 6.1.1 of Cisco IOS XR Software when the gRPC service is enabled on the device. The gRPC service is not enabled by default. Cisco Bug IDs: CSCvb14441. |