Search Results (3017 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-49794 1 Redhat 12 Enterprise Linux, Insights Proxy, Jboss Core Services and 9 more 2025-10-03 9.1 Critical
A use-after-free vulnerability was found in libxml2. This issue occurs when parsing XPath elements under certain circumstances when the XML schematron has the <sch:name path="..."/> schema elements. This flaw allows a malicious actor to craft a malicious XML document used as input for libxml, resulting in the program's crash using libxml or other possible undefined behaviors.
CVE-2025-4373 1 Redhat 9 Enterprise Linux, Insights Proxy, Openshift Distributed Tracing and 6 more 2025-10-03 4.8 Medium
A flaw was found in GLib, which is vulnerable to an integer overflow in the g_string_insert_unichar() function. When the position at which to insert the character is large, the position will overflow, leading to a buffer underwrite.
CVE-2025-3576 1 Redhat 10 Ansible Automation Platform, Discovery, Enterprise Linux and 7 more 2025-10-03 5.9 Medium
A vulnerability in the MIT Kerberos implementation allows GSSAPI-protected messages using RC4-HMAC-MD5 to be spoofed due to weaknesses in the MD5 checksum design. If RC4 is preferred over stronger encryption types, an attacker could exploit MD5 collisions to forge message integrity codes. This may lead to unauthorized message tampering.
CVE-2025-6020 1 Redhat 12 Confidential Compute Attestation, Discovery, Enterprise Linux and 9 more 2025-10-03 7.8 High
A flaw was found in linux-pam. The module pam_namespace may use access user-controlled paths without proper protection, allowing local users to elevate their privileges to root via multiple symlink attacks and race conditions.
CVE-2024-42265 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2025-10-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: protect the fetch of ->fd[fd] in do_dup2() from mispredictions both callers have verified that fd is not greater than ->max_fds; however, misprediction might end up with tofree = fdt->fd[fd]; being speculatively executed. That's wrong for the same reasons why it's wrong in close_fd()/file_close_fd_locked(); the same solution applies - array_index_nospec(fd, fdt->max_fds) could differ from fd only in case of speculative execution on mispredicted path.
CVE-2025-1244 1 Redhat 8 Enterprise Linux, Openshift Builds, Rhel Aus and 5 more 2025-10-03 8.8 High
A command injection flaw was found in the text editor Emacs. It could allow a remote, unauthenticated attacker to execute arbitrary shell commands on a vulnerable system. Exploitation is possible by tricking users into visiting a specially crafted website or an HTTP URL with a redirect.
CVE-2024-10963 1 Redhat 4 Enterprise Linux, Openshift, Openshift Ai and 1 more 2025-10-03 7.4 High
A flaw was found in pam_access, where certain rules in its configuration file are mistakenly treated as hostnames. This vulnerability allows attackers to trick the system by pretending to be a trusted hostname, gaining unauthorized access. This issue poses a risk for systems that rely on this feature to control who can access certain services or terminals.
CVE-2025-26465 4 Debian, Netapp, Openbsd and 1 more 9 Debian Linux, Active Iq Unified Manager, Ontap and 6 more 2025-10-03 6.8 Medium
A vulnerability was found in OpenSSH when the VerifyHostKeyDNS option is enabled. A machine-in-the-middle attack can be performed by a malicious machine impersonating a legit server. This issue occurs due to how OpenSSH mishandles error codes in specific conditions when verifying the host key. For an attack to be considered successful, the attacker needs to manage to exhaust the client's memory resource first, turning the attack complexity high.
CVE-2024-8176 1 Redhat 10 Devworkspace, Discovery, Enterprise Linux and 7 more 2025-10-03 7.5 High
A stack overflow vulnerability exists in the libexpat library due to the way it handles recursive entity expansion in XML documents. When parsing an XML document with deeply nested entity references, libexpat can be forced to recurse indefinitely, exhausting the stack space and causing a crash. This issue could lead to denial of service (DoS) or, in some cases, exploitable memory corruption, depending on the environment and library usage.
CVE-2024-38615 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2025-10-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cpufreq: exit() callback is optional The exit() callback is optional and shouldn't be called without checking a valid pointer first. Also, we must clear freq_table pointer even if the exit() callback isn't present.
CVE-2024-38663 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2025-10-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: blk-cgroup: fix list corruption from resetting io stat Since commit 3b8cc6298724 ("blk-cgroup: Optimize blkcg_rstat_flush()"), each iostat instance is added to blkcg percpu list, so blkcg_reset_stats() can't reset the stat instance by memset(), otherwise the llist may be corrupted. Fix the issue by only resetting the counter part.
CVE-2024-40914 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2025-10-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm/huge_memory: don't unpoison huge_zero_folio When I did memory failure tests recently, below panic occurs: kernel BUG at include/linux/mm.h:1135! invalid opcode: 0000 [#1] PREEMPT SMP NOPTI CPU: 9 PID: 137 Comm: kswapd1 Not tainted 6.9.0-rc4-00491-gd5ce28f156fe-dirty #14 RIP: 0010:shrink_huge_zero_page_scan+0x168/0x1a0 RSP: 0018:ffff9933c6c57bd0 EFLAGS: 00000246 RAX: 000000000000003e RBX: 0000000000000000 RCX: ffff88f61fc5c9c8 RDX: 0000000000000000 RSI: 0000000000000027 RDI: ffff88f61fc5c9c0 RBP: ffffcd7c446b0000 R08: ffffffff9a9405f0 R09: 0000000000005492 R10: 00000000000030ea R11: ffffffff9a9405f0 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000000 R15: ffff88e703c4ac00 FS: 0000000000000000(0000) GS:ffff88f61fc40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055f4da6e9878 CR3: 0000000c71048000 CR4: 00000000000006f0 Call Trace: <TASK> do_shrink_slab+0x14f/0x6a0 shrink_slab+0xca/0x8c0 shrink_node+0x2d0/0x7d0 balance_pgdat+0x33a/0x720 kswapd+0x1f3/0x410 kthread+0xd5/0x100 ret_from_fork+0x2f/0x50 ret_from_fork_asm+0x1a/0x30 </TASK> Modules linked in: mce_inject hwpoison_inject ---[ end trace 0000000000000000 ]--- RIP: 0010:shrink_huge_zero_page_scan+0x168/0x1a0 RSP: 0018:ffff9933c6c57bd0 EFLAGS: 00000246 RAX: 000000000000003e RBX: 0000000000000000 RCX: ffff88f61fc5c9c8 RDX: 0000000000000000 RSI: 0000000000000027 RDI: ffff88f61fc5c9c0 RBP: ffffcd7c446b0000 R08: ffffffff9a9405f0 R09: 0000000000005492 R10: 00000000000030ea R11: ffffffff9a9405f0 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000000 R15: ffff88e703c4ac00 FS: 0000000000000000(0000) GS:ffff88f61fc40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055f4da6e9878 CR3: 0000000c71048000 CR4: 00000000000006f0 The root cause is that HWPoison flag will be set for huge_zero_folio without increasing the folio refcnt. But then unpoison_memory() will decrease the folio refcnt unexpectedly as it appears like a successfully hwpoisoned folio leading to VM_BUG_ON_PAGE(page_ref_count(page) == 0) when releasing huge_zero_folio. Skip unpoisoning huge_zero_folio in unpoison_memory() to fix this issue. We're not prepared to unpoison huge_zero_folio yet.
CVE-2025-7493 1 Redhat 4 Enterprise Linux, Rhel E4s, Rhel Eus and 1 more 2025-10-02 9.1 Critical
A privilege escalation flaw from host to domain administrator was found in FreeIPA. This vulnerability is similar to CVE-2025-4404, where it fails to validate the uniqueness of the krbCanonicalName. While the previously released version added validations for the admin@REALM credential, FreeIPA still does not validate the root@REALM canonical name, which can also be used as the realm administrator's name. This flaw allows an attacker to perform administrative tasks over the REALM, leading to access to sensitive data and sensitive data exfiltration.
CVE-2024-9355 1 Redhat 22 Amq Streams, Ansible Automation Platform, Container Native Virtualization and 19 more 2025-10-02 6.5 Medium
A vulnerability was found in Golang FIPS OpenSSL. This flaw allows a malicious user to randomly cause an uninitialized buffer length variable with a zeroed buffer to be returned in FIPS mode. It may also be possible to force a false positive match between non-equal hashes when comparing a trusted computed hmac sum to an untrusted input sum if an attacker can send a zeroed buffer in place of a pre-computed sum.  It is also possible to force a derived key to be all zeros instead of an unpredictable value.  This may have follow-on implications for the Go TLS stack.
CVE-2024-3049 2 Clusterlabs, Redhat 11 Booth, Enterprise Linux, Enterprise Linux Eus and 8 more 2025-10-02 5.9 Medium
A flaw was found in Booth, a cluster ticket manager. If a specially-crafted hash is passed to gcry_md_get_algo_dlen(), it may allow an invalid HMAC to be accepted by the Booth server.
CVE-2024-11218 1 Redhat 8 Enterprise Linux, Openshift, Openshift Ironic and 5 more 2025-10-02 8.6 High
A vulnerability was found in `podman build` and `buildah.` This issue occurs in a container breakout by using --jobs=2 and a race condition when building a malicious Containerfile. SELinux might mitigate it, but even with SELinux on, it still allows the enumeration of files and directories on the host.
CVE-2024-53088 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2025-10-01 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: i40e: fix race condition by adding filter's intermediate sync state Fix a race condition in the i40e driver that leads to MAC/VLAN filters becoming corrupted and leaking. Address the issue that occurs under heavy load when multiple threads are concurrently modifying MAC/VLAN filters by setting mac and port VLAN. 1. Thread T0 allocates a filter in i40e_add_filter() within i40e_ndo_set_vf_port_vlan(). 2. Thread T1 concurrently frees the filter in __i40e_del_filter() within i40e_ndo_set_vf_mac(). 3. Subsequently, i40e_service_task() calls i40e_sync_vsi_filters(), which refers to the already freed filter memory, causing corruption. Reproduction steps: 1. Spawn multiple VFs. 2. Apply a concurrent heavy load by running parallel operations to change MAC addresses on the VFs and change port VLANs on the host. 3. Observe errors in dmesg: "Error I40E_AQ_RC_ENOSPC adding RX filters on VF XX, please set promiscuous on manually for VF XX". Exact code for stable reproduction Intel can't open-source now. The fix involves implementing a new intermediate filter state, I40E_FILTER_NEW_SYNC, for the time when a filter is on a tmp_add_list. These filters cannot be deleted from the hash list directly but must be removed using the full process.
CVE-2024-50256 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2025-10-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_reject_ipv6: fix potential crash in nf_send_reset6() I got a syzbot report without a repro [1] crashing in nf_send_reset6() I think the issue is that dev->hard_header_len is zero, and we attempt later to push an Ethernet header. Use LL_MAX_HEADER, as other functions in net/ipv6/netfilter/nf_reject_ipv6.c. [1] skbuff: skb_under_panic: text:ffffffff89b1d008 len:74 put:14 head:ffff88803123aa00 data:ffff88803123a9f2 tail:0x3c end:0x140 dev:syz_tun kernel BUG at net/core/skbuff.c:206 ! Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI CPU: 0 UID: 0 PID: 7373 Comm: syz.1.568 Not tainted 6.12.0-rc2-syzkaller-00631-g6d858708d465 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 RIP: 0010:skb_panic net/core/skbuff.c:206 [inline] RIP: 0010:skb_under_panic+0x14b/0x150 net/core/skbuff.c:216 Code: 0d 8d 48 c7 c6 60 a6 29 8e 48 8b 54 24 08 8b 0c 24 44 8b 44 24 04 4d 89 e9 50 41 54 41 57 41 56 e8 ba 30 38 02 48 83 c4 20 90 <0f> 0b 0f 1f 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 RSP: 0018:ffffc900045269b0 EFLAGS: 00010282 RAX: 0000000000000088 RBX: dffffc0000000000 RCX: cd66dacdc5d8e800 RDX: 0000000000000000 RSI: 0000000000000200 RDI: 0000000000000000 RBP: ffff88802d39a3d0 R08: ffffffff8174afec R09: 1ffff920008a4ccc R10: dffffc0000000000 R11: fffff520008a4ccd R12: 0000000000000140 R13: ffff88803123aa00 R14: ffff88803123a9f2 R15: 000000000000003c FS: 00007fdbee5ff6c0(0000) GS:ffff8880b8600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 000000005d322000 CR4: 00000000003526f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> skb_push+0xe5/0x100 net/core/skbuff.c:2636 eth_header+0x38/0x1f0 net/ethernet/eth.c:83 dev_hard_header include/linux/netdevice.h:3208 [inline] nf_send_reset6+0xce6/0x1270 net/ipv6/netfilter/nf_reject_ipv6.c:358 nft_reject_inet_eval+0x3b9/0x690 net/netfilter/nft_reject_inet.c:48 expr_call_ops_eval net/netfilter/nf_tables_core.c:240 [inline] nft_do_chain+0x4ad/0x1da0 net/netfilter/nf_tables_core.c:288 nft_do_chain_inet+0x418/0x6b0 net/netfilter/nft_chain_filter.c:161 nf_hook_entry_hookfn include/linux/netfilter.h:154 [inline] nf_hook_slow+0xc3/0x220 net/netfilter/core.c:626 nf_hook include/linux/netfilter.h:269 [inline] NF_HOOK include/linux/netfilter.h:312 [inline] br_nf_pre_routing_ipv6+0x63e/0x770 net/bridge/br_netfilter_ipv6.c:184 nf_hook_entry_hookfn include/linux/netfilter.h:154 [inline] nf_hook_bridge_pre net/bridge/br_input.c:277 [inline] br_handle_frame+0x9fd/0x1530 net/bridge/br_input.c:424 __netif_receive_skb_core+0x13e8/0x4570 net/core/dev.c:5562 __netif_receive_skb_one_core net/core/dev.c:5666 [inline] __netif_receive_skb+0x12f/0x650 net/core/dev.c:5781 netif_receive_skb_internal net/core/dev.c:5867 [inline] netif_receive_skb+0x1e8/0x890 net/core/dev.c:5926 tun_rx_batched+0x1b7/0x8f0 drivers/net/tun.c:1550 tun_get_user+0x3056/0x47e0 drivers/net/tun.c:2007 tun_chr_write_iter+0x10d/0x1f0 drivers/net/tun.c:2053 new_sync_write fs/read_write.c:590 [inline] vfs_write+0xa6d/0xc90 fs/read_write.c:683 ksys_write+0x183/0x2b0 fs/read_write.c:736 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7fdbeeb7d1ff Code: 89 54 24 18 48 89 74 24 10 89 7c 24 08 e8 c9 8d 02 00 48 8b 54 24 18 48 8b 74 24 10 41 89 c0 8b 7c 24 08 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 31 44 89 c7 48 89 44 24 08 e8 1c 8e 02 00 48 RSP: 002b:00007fdbee5ff000 EFLAGS: 00000293 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 00007fdbeed36058 RCX: 00007fdbeeb7d1ff RDX: 000000000000008e RSI: 0000000020000040 RDI: 00000000000000c8 RBP: 00007fdbeebf12be R08: 0000000 ---truncated---
CVE-2024-50192 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2025-10-01 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: irqchip/gic-v4: Don't allow a VMOVP on a dying VPE Kunkun Jiang reported that there is a small window of opportunity for userspace to force a change of affinity for a VPE while the VPE has already been unmapped, but the corresponding doorbell interrupt still visible in /proc/irq/. Plug the race by checking the value of vmapp_count, which tracks whether the VPE is mapped ot not, and returning an error in this case. This involves making vmapp_count common to both GICv4.1 and its v4.0 ancestor.
CVE-2024-50142 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2025-10-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: xfrm: validate new SA's prefixlen using SA family when sel.family is unset This expands the validation introduced in commit 07bf7908950a ("xfrm: Validate address prefix lengths in the xfrm selector.") syzbot created an SA with usersa.sel.family = AF_UNSPEC usersa.sel.prefixlen_s = 128 usersa.family = AF_INET Because of the AF_UNSPEC selector, verify_newsa_info doesn't put limits on prefixlen_{s,d}. But then copy_from_user_state sets x->sel.family to usersa.family (AF_INET). Do the same conversion in verify_newsa_info before validating prefixlen_{s,d}, since that's how prefixlen is going to be used later on.