| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix infinite loop in __insert_extent_tree()
When we get wrong extent info data, and look up extent_node in rb tree,
it will cause infinite loop (CONFIG_F2FS_CHECK_FS=n). Avoiding this by
return NULL and print some kernel messages in that case. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: Fix mmap write lock not release
If mmap write lock is taken while draining retry fault, mmap write lock
is not released because svm_range_restore_pages calls mmap_read_unlock
then returns. This causes deadlock and system hangs later because mmap
read or write lock cannot be taken.
Downgrade mmap write lock to read lock if draining retry fault fix this
bug. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: cdns3: gadget: Use-after-free during failed initialization and exit of cdnsp gadget
In the __cdnsp_gadget_init() and cdnsp_gadget_exit() functions, the gadget
structure (pdev->gadget) was freed before its endpoints.
The endpoints are linked via the ep_list in the gadget structure.
Freeing the gadget first leaves dangling pointers in the endpoint list.
When the endpoints are subsequently freed, this results in a use-after-free.
Fix:
By separating the usb_del_gadget_udc() operation into distinct "del" and
"put" steps, cdnsp_gadget_free_endpoints() can be executed prior to the
final release of the gadget structure with usb_put_gadget().
A patch similar to bb9c74a5bd14("usb: dwc3: gadget: Free gadget structure
only after freeing endpoints"). |
| In the Linux kernel, the following vulnerability has been resolved:
ntfs3: pretend $Extend records as regular files
Since commit af153bb63a33 ("vfs: catch invalid modes in may_open()")
requires any inode be one of S_IFDIR/S_IFLNK/S_IFREG/S_IFCHR/S_IFBLK/
S_IFIFO/S_IFSOCK type, use S_IFREG for $Extend records. |
| In the Linux kernel, the following vulnerability has been resolved:
accel/habanalabs: support mapping cb with vmalloc-backed coherent memory
When IOMMU is enabled, dma_alloc_coherent() with GFP_USER may return
addresses from the vmalloc range. If such an address is mapped without
VM_MIXEDMAP, vm_insert_page() will trigger a BUG_ON due to the
VM_PFNMAP restriction.
Fix this by checking for vmalloc addresses and setting VM_MIXEDMAP
in the VMA before mapping. This ensures safe mapping and avoids kernel
crashes. The memory is still driver-allocated and cannot be accessed
directly by userspace. |
| In the Linux kernel, the following vulnerability has been resolved:
amd/amdkfd: resolve a race in amdgpu_amdkfd_device_fini_sw
There is race in amdgpu_amdkfd_device_fini_sw and interrupt.
if amdgpu_amdkfd_device_fini_sw run in b/w kfd_cleanup_nodes and
kfree(kfd), and KGD interrupt generated.
kernel panic log:
BUG: kernel NULL pointer dereference, address: 0000000000000098
amdgpu 0000:c8:00.0: amdgpu: Requesting 4 partitions through PSP
PGD d78c68067 P4D d78c68067
kfd kfd: amdgpu: Allocated 3969056 bytes on gart
PUD 1465b8067 PMD @
Oops: @002 [#1] SMP NOPTI
kfd kfd: amdgpu: Total number of KFD nodes to be created: 4
CPU: 115 PID: @ Comm: swapper/115 Kdump: loaded Tainted: G S W OE K
RIP: 0010:_raw_spin_lock_irqsave+0x12/0x40
Code: 89 e@ 41 5c c3 cc cc cc cc 66 66 2e Of 1f 84 00 00 00 00 00 OF 1f 40 00 Of 1f 44% 00 00 41 54 9c 41 5c fa 31 cO ba 01 00 00 00 <fO> OF b1 17 75 Ba 4c 89 e@ 41 Sc
89 c6 e8 07 38 5d
RSP: 0018: ffffc90@1a6b0e28 EFLAGS: 00010046
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000018
0000000000000001 RSI: ffff8883bb623e00 RDI: 0000000000000098
ffff8883bb000000 RO8: ffff888100055020 ROO: ffff888100055020
0000000000000000 R11: 0000000000000000 R12: 0900000000000002
ffff888F2b97da0@ R14: @000000000000098 R15: ffff8883babdfo00
CS: 010 DS: 0000 ES: 0000 CRO: 0000000080050033
CR2: 0000000000000098 CR3: 0000000e7cae2006 CR4: 0000000002770ce0
0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
0000000000000000 DR6: 00000000fffeO7FO DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<IRQ>
kgd2kfd_interrupt+@x6b/0x1f@ [amdgpu]
? amdgpu_fence_process+0xa4/0x150 [amdgpu]
kfd kfd: amdgpu: Node: 0, interrupt_bitmap: 3 YcpxFl Rant tErace
amdgpu_irq_dispatch+0x165/0x210 [amdgpu]
amdgpu_ih_process+0x80/0x100 [amdgpu]
amdgpu: Virtual CRAT table created for GPU
amdgpu_irq_handler+0x1f/@x60 [amdgpu]
__handle_irq_event_percpu+0x3d/0x170
amdgpu: Topology: Add dGPU node [0x74a2:0x1002]
handle_irq_event+0x5a/@xcO
handle_edge_irq+0x93/0x240
kfd kfd: amdgpu: KFD node 1 partition @ size 49148M
asm_call_irq_on_stack+0xf/@x20
</IRQ>
common_interrupt+0xb3/0x130
asm_common_interrupt+0x1le/0x40
5.10.134-010.a1i5000.a18.x86_64 #1 |
| In the Linux kernel, the following vulnerability has been resolved:
exfat: validate cluster allocation bits of the allocation bitmap
syzbot created an exfat image with cluster bits not set for the allocation
bitmap. exfat-fs reads and uses the allocation bitmap without checking
this. The problem is that if the start cluster of the allocation bitmap
is 6, cluster 6 can be allocated when creating a directory with mkdir.
exfat zeros out this cluster in exfat_mkdir, which can delete existing
entries. This can reallocate the allocated entries. In addition,
the allocation bitmap is also zeroed out, so cluster 6 can be reallocated.
This patch adds exfat_test_bitmap_range to validate that clusters used for
the allocation bitmap are correctly marked as in-use. |
| In the Linux kernel, the following vulnerability has been resolved:
orangefs: fix xattr related buffer overflow...
Willy Tarreau <w@1wt.eu> forwarded me a message from
Disclosure <disclosure@aisle.com> with the following
warning:
> The helper `xattr_key()` uses the pointer variable in the loop condition
> rather than dereferencing it. As `key` is incremented, it remains non-NULL
> (until it runs into unmapped memory), so the loop does not terminate on
> valid C strings and will walk memory indefinitely, consuming CPU or hanging
> the thread.
I easily reproduced this with setfattr and getfattr, causing a kernel
oops, hung user processes and corrupted orangefs files. Disclosure
sent along a diff (not a patch) with a suggested fix, which I based
this patch on.
After xattr_key started working right, xfstest generic/069 exposed an
xattr related memory leak that lead to OOM. xattr_key returns
a hashed key. When adding xattrs to the orangefs xattr cache, orangefs
used hash_add, a kernel hashing macro. hash_add also hashes the key using
hash_log which resulted in additions to the xattr cache going to the wrong
hash bucket. generic/069 tortures a single file and orangefs does a
getattr for the xattr "security.capability" every time. Orangefs
negative caches on xattrs which includes a kmalloc. Since adds to the
xattr cache were going to the wrong bucket, every getattr for
"security.capability" resulted in another kmalloc, none of which were
ever freed.
I changed the two uses of hash_add to hlist_add_head instead
and the memory leak ceased and generic/069 quit throwing furniture. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: hide VRAM sysfs attributes on GPUs without VRAM
Otherwise accessing them can cause a crash. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix NULL pointer dereference in VRAM logic for APU devices
Previously, APU platforms (and other scenarios with uninitialized VRAM managers)
triggered a NULL pointer dereference in `ttm_resource_manager_usage()`. The root
cause is not that the `struct ttm_resource_manager *man` pointer itself is NULL,
but that `man->bdev` (the backing device pointer within the manager) remains
uninitialized (NULL) on APUs—since APUs lack dedicated VRAM and do not fully
set up VRAM manager structures. When `ttm_resource_manager_usage()` attempts to
acquire `man->bdev->lru_lock`, it dereferences the NULL `man->bdev`, leading to
a kernel OOPS.
1. **amdgpu_cs.c**: Extend the existing bandwidth control check in
`amdgpu_cs_get_threshold_for_moves()` to include a check for
`ttm_resource_manager_used()`. If the manager is not used (uninitialized
`bdev`), return 0 for migration thresholds immediately—skipping VRAM-specific
logic that would trigger the NULL dereference.
2. **amdgpu_kms.c**: Update the `AMDGPU_INFO_VRAM_USAGE` ioctl and memory info
reporting to use a conditional: if the manager is used, return the real VRAM
usage; otherwise, return 0. This avoids accessing `man->bdev` when it is
NULL.
3. **amdgpu_virt.c**: Modify the vf2pf (virtual function to physical function)
data write path. Use `ttm_resource_manager_used()` to check validity: if the
manager is usable, calculate `fb_usage` from VRAM usage; otherwise, set
`fb_usage` to 0 (APUs have no discrete framebuffer to report).
This approach is more robust than APU-specific checks because it:
- Works for all scenarios where the VRAM manager is uninitialized (not just APUs),
- Aligns with TTM's design by using its native helper function,
- Preserves correct behavior for discrete GPUs (which have fully initialized
`man->bdev` and pass the `ttm_resource_manager_used()` check).
v4: use ttm_resource_manager_used(&adev->mman.vram_mgr.manager) instead of checking the adev->gmc.is_app_apu flag (Christian) |
| In the Linux kernel, the following vulnerability has been resolved:
exfat: fix improper check of dentry.stream.valid_size
We found an infinite loop bug in the exFAT file system that can lead to a
Denial-of-Service (DoS) condition. When a dentry in an exFAT filesystem is
malformed, the following system calls — SYS_openat, SYS_ftruncate, and
SYS_pwrite64 — can cause the kernel to hang.
Root cause analysis shows that the size validation code in exfat_find()
does not check whether dentry.stream.valid_size is negative. As a result,
the system calls mentioned above can succeed and eventually trigger the DoS
issue.
This patch adds a check for negative dentry.stream.valid_size to prevent
this vulnerability. |
| In the Linux kernel, the following vulnerability has been resolved:
smb/server: fix possible memory leak in smb2_read()
Memory leak occurs when ksmbd_vfs_read() fails.
Fix this by adding the missing kvfree(). |
| In the Linux kernel, the following vulnerability has been resolved:
smb/server: fix possible refcount leak in smb2_sess_setup()
Reference count of ksmbd_session will leak when session need reconnect.
Fix this by adding the missing ksmbd_user_session_put(). |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: Check the untrusted offset in FF-A memory share
Verify the offset to prevent OOB access in the hypervisor
FF-A buffer in case an untrusted large enough value
[U32_MAX - sizeof(struct ffa_composite_mem_region) + 1, U32_MAX]
is set from the host kernel. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm: Fix pgtable prealloc error path
The following splat was reported:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000010
Mem abort info:
ESR = 0x0000000096000004
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x04: level 0 translation fault
Data abort info:
ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000
CM = 0, WnR = 0, TnD = 0, TagAccess = 0
GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
user pgtable: 4k pages, 48-bit VAs, pgdp=00000008d0fd8000
[0000000000000010] pgd=0000000000000000, p4d=0000000000000000
Internal error: Oops: 0000000096000004 [#1] SMP
CPU: 5 UID: 1000 PID: 149076 Comm: Xwayland Tainted: G S 6.16.0-rc2-00809-g0b6974bb4134-dirty #367 PREEMPT
Tainted: [S]=CPU_OUT_OF_SPEC
Hardware name: Qualcomm Technologies, Inc. SM8650 HDK (DT)
pstate: 83400005 (Nzcv daif +PAN -UAO +TCO +DIT -SSBS BTYPE=--)
pc : build_detached_freelist+0x28/0x224
lr : kmem_cache_free_bulk.part.0+0x38/0x244
sp : ffff000a508c7a20
x29: ffff000a508c7a20 x28: ffff000a508c7d50 x27: ffffc4e49d16f350
x26: 0000000000000058 x25: 00000000fffffffc x24: 0000000000000000
x23: ffff00098c4e1450 x22: 00000000fffffffc x21: 0000000000000000
x20: ffff000a508c7af8 x19: 0000000000000002 x18: 00000000000003e8
x17: ffff000809523850 x16: ffff000809523820 x15: 0000000000401640
x14: ffff000809371140 x13: 0000000000000130 x12: ffff0008b5711e30
x11: 00000000001058fa x10: 0000000000000a80 x9 : ffff000a508c7940
x8 : ffff000809371ba0 x7 : 781fffe033087fff x6 : 0000000000000000
x5 : ffff0008003cd000 x4 : 781fffe033083fff x3 : ffff000a508c7af8
x2 : fffffdffc0000000 x1 : 0001000000000000 x0 : ffff0008001a6a00
Call trace:
build_detached_freelist+0x28/0x224 (P)
kmem_cache_free_bulk.part.0+0x38/0x244
kmem_cache_free_bulk+0x10/0x1c
msm_iommu_pagetable_prealloc_cleanup+0x3c/0xd0
msm_vma_job_free+0x30/0x240
msm_ioctl_vm_bind+0x1d0/0x9a0
drm_ioctl_kernel+0x84/0x104
drm_ioctl+0x358/0x4d4
__arm64_sys_ioctl+0x8c/0xe0
invoke_syscall+0x44/0x100
el0_svc_common.constprop.0+0x3c/0xe0
do_el0_svc+0x18/0x20
el0_svc+0x30/0x100
el0t_64_sync_handler+0x104/0x130
el0t_64_sync+0x170/0x174
Code: aa0203f5 b26287e2 f2dfbfe2 aa0303f4 (f8737ab6)
---[ end trace 0000000000000000 ]---
Since msm_vma_job_free() is called directly from the ioctl, this looks
like an error path cleanup issue. Which I think results from
prealloc_cleanup() called without a preceding successful
prealloc_allocate() call. So handle that case better.
Patchwork: https://patchwork.freedesktop.org/patch/678677/ |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to do sanity check on node footer for non inode dnode
As syzbot reported below:
------------[ cut here ]------------
kernel BUG at fs/f2fs/file.c:1243!
Oops: invalid opcode: 0000 [#1] SMP KASAN NOPTI
CPU: 0 UID: 0 PID: 5354 Comm: syz.0.0 Not tainted 6.17.0-rc1-syzkaller-00211-g90d970cade8e #0 PREEMPT(full)
RIP: 0010:f2fs_truncate_hole+0x69e/0x6c0 fs/f2fs/file.c:1243
Call Trace:
<TASK>
f2fs_punch_hole+0x2db/0x330 fs/f2fs/file.c:1306
f2fs_fallocate+0x546/0x990 fs/f2fs/file.c:2018
vfs_fallocate+0x666/0x7e0 fs/open.c:342
ksys_fallocate fs/open.c:366 [inline]
__do_sys_fallocate fs/open.c:371 [inline]
__se_sys_fallocate fs/open.c:369 [inline]
__x64_sys_fallocate+0xc0/0x110 fs/open.c:369
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f1e65f8ebe9
w/ a fuzzed image, f2fs may encounter panic due to it detects inconsistent
truncation range in direct node in f2fs_truncate_hole().
The root cause is: a non-inode dnode may has the same footer.ino and
footer.nid, so the dnode will be parsed as an inode, then ADDRS_PER_PAGE()
may return wrong blkaddr count which may be 923 typically, by chance,
dn.ofs_in_node is equal to 923, then count can be calculated to 0 in below
statement, later it will trigger panic w/ f2fs_bug_on(, count == 0 || ...).
count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
This patch introduces a new node_type NODE_TYPE_NON_INODE, then allowing
passing the new_type to sanity_check_node_footer in f2fs_get_node_folio()
to detect corruption that a non-inode dnode has the same footer.ino and
footer.nid.
Scripts to reproduce:
mkfs.f2fs -f /dev/vdb
mount /dev/vdb /mnt/f2fs
touch /mnt/f2fs/foo
touch /mnt/f2fs/bar
dd if=/dev/zero of=/mnt/f2fs/foo bs=1M count=8
umount /mnt/f2fs
inject.f2fs --node --mb i_nid --nid 4 --idx 0 --val 5 /dev/vdb
mount /dev/vdb /mnt/f2fs
xfs_io /mnt/f2fs/foo -c "fpunch 6984k 4k" |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: bpf: Only mitigate cBPF programs loaded by unprivileged users
Support for eBPF programs loaded by unprivileged users is typically
disabled. This means only cBPF programs need to be mitigated for BHB.
In addition, only mitigate cBPF programs that were loaded by an
unprivileged user. Privileged users can also load the same program
via eBPF, making the mitigation pointless. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: bpf: Add BHB mitigation to the epilogue for cBPF programs
A malicious BPF program may manipulate the branch history to influence
what the hardware speculates will happen next.
On exit from a BPF program, emit the BHB mititgation sequence.
This is only applied for 'classic' cBPF programs that are loaded by
seccomp. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: Tear down vGIC on failed vCPU creation
If kvm_arch_vcpu_create() fails to share the vCPU page with the
hypervisor, we propagate the error back to the ioctl but leave the
vGIC vCPU data initialised. Note only does this leak the corresponding
memory when the vCPU is destroyed but it can also lead to use-after-free
if the redistributor device handling tries to walk into the vCPU.
Add the missing cleanup to kvm_arch_vcpu_create(), ensuring that the
vGIC vCPU structures are destroyed on error. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: Get rid of userspace_irqchip_in_use
Improper use of userspace_irqchip_in_use led to syzbot hitting the
following WARN_ON() in kvm_timer_update_irq():
WARNING: CPU: 0 PID: 3281 at arch/arm64/kvm/arch_timer.c:459
kvm_timer_update_irq+0x21c/0x394
Call trace:
kvm_timer_update_irq+0x21c/0x394 arch/arm64/kvm/arch_timer.c:459
kvm_timer_vcpu_reset+0x158/0x684 arch/arm64/kvm/arch_timer.c:968
kvm_reset_vcpu+0x3b4/0x560 arch/arm64/kvm/reset.c:264
kvm_vcpu_set_target arch/arm64/kvm/arm.c:1553 [inline]
kvm_arch_vcpu_ioctl_vcpu_init arch/arm64/kvm/arm.c:1573 [inline]
kvm_arch_vcpu_ioctl+0x112c/0x1b3c arch/arm64/kvm/arm.c:1695
kvm_vcpu_ioctl+0x4ec/0xf74 virt/kvm/kvm_main.c:4658
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:907 [inline]
__se_sys_ioctl fs/ioctl.c:893 [inline]
__arm64_sys_ioctl+0x108/0x184 fs/ioctl.c:893
__invoke_syscall arch/arm64/kernel/syscall.c:35 [inline]
invoke_syscall+0x78/0x1b8 arch/arm64/kernel/syscall.c:49
el0_svc_common+0xe8/0x1b0 arch/arm64/kernel/syscall.c:132
do_el0_svc+0x40/0x50 arch/arm64/kernel/syscall.c:151
el0_svc+0x54/0x14c arch/arm64/kernel/entry-common.c:712
el0t_64_sync_handler+0x84/0xfc arch/arm64/kernel/entry-common.c:730
el0t_64_sync+0x190/0x194 arch/arm64/kernel/entry.S:598
The following sequence led to the scenario:
- Userspace creates a VM and a vCPU.
- The vCPU is initialized with KVM_ARM_VCPU_PMU_V3 during
KVM_ARM_VCPU_INIT.
- Without any other setup, such as vGIC or vPMU, userspace issues
KVM_RUN on the vCPU. Since the vPMU is requested, but not setup,
kvm_arm_pmu_v3_enable() fails in kvm_arch_vcpu_run_pid_change().
As a result, KVM_RUN returns after enabling the timer, but before
incrementing 'userspace_irqchip_in_use':
kvm_arch_vcpu_run_pid_change()
ret = kvm_arm_pmu_v3_enable()
if (!vcpu->arch.pmu.created)
return -EINVAL;
if (ret)
return ret;
[...]
if (!irqchip_in_kernel(kvm))
static_branch_inc(&userspace_irqchip_in_use);
- Userspace ignores the error and issues KVM_ARM_VCPU_INIT again.
Since the timer is already enabled, control moves through the
following flow, ultimately hitting the WARN_ON():
kvm_timer_vcpu_reset()
if (timer->enabled)
kvm_timer_update_irq()
if (!userspace_irqchip())
ret = kvm_vgic_inject_irq()
ret = vgic_lazy_init()
if (unlikely(!vgic_initialized(kvm)))
if (kvm->arch.vgic.vgic_model !=
KVM_DEV_TYPE_ARM_VGIC_V2)
return -EBUSY;
WARN_ON(ret);
Theoretically, since userspace_irqchip_in_use's functionality can be
simply replaced by '!irqchip_in_kernel()', get rid of the static key
to avoid the mismanagement, which also helps with the syzbot issue. |