CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
mailbox: mtk-cmdq: Move devm_mbox_controller_register() after devm_pm_runtime_enable()
When mtk-cmdq unbinds, a WARN_ON message with condition
pm_runtime_get_sync() < 0 occurs.
According to the call tracei below:
cmdq_mbox_shutdown
mbox_free_channel
mbox_controller_unregister
__devm_mbox_controller_unregister
...
The root cause can be deduced to be calling pm_runtime_get_sync() after
calling pm_runtime_disable() as observed below:
1. CMDQ driver uses devm_mbox_controller_register() in cmdq_probe()
to bind the cmdq device to the mbox_controller, so
devm_mbox_controller_unregister() will automatically unregister
the device bound to the mailbox controller when the device-managed
resource is removed. That means devm_mbox_controller_unregister()
and cmdq_mbox_shoutdown() will be called after cmdq_remove().
2. CMDQ driver also uses devm_pm_runtime_enable() in cmdq_probe() after
devm_mbox_controller_register(), so that devm_pm_runtime_disable()
will be called after cmdq_remove(), but before
devm_mbox_controller_unregister().
To fix this problem, cmdq_probe() needs to move
devm_mbox_controller_register() after devm_pm_runtime_enable() to make
devm_pm_runtime_disable() be called after
devm_mbox_controller_unregister(). |
Dell PowerProtect Data Domain with Data Domain Operating System (DD OS) of Feature Release versions 7.7.1.0 through 8.1.0.10, LTS2024 release Versions 7.13.1.0 through 7.13.1.25, LTS 2023 release versions 7.10.1.0 through 7.10.1.50, contain an Improper Neutralization of Argument Delimiters in a Command ('Argument Injection') vulnerability. A high privileged attacker with local access could potentially exploit this vulnerability, leading to arbitrary command execution. Exploitation may allow privilege escalation to root. |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_inner: incorrect percpu area handling under softirq
Softirq can interrupt ongoing packet from process context that is
walking over the percpu area that contains inner header offsets.
Disable bh and perform three checks before restoring the percpu inner
header offsets to validate that the percpu area is valid for this
skbuff:
1) If the NFT_PKTINFO_INNER_FULL flag is set on, then this skbuff
has already been parsed before for inner header fetching to
register.
2) Validate that the percpu area refers to this skbuff using the
skbuff pointer as a cookie. If there is a cookie mismatch, then
this skbuff needs to be parsed again.
3) Finally, validate if the percpu area refers to this tunnel type.
Only after these three checks the percpu area is restored to a on-stack
copy and bh is enabled again.
After inner header fetching, the on-stack copy is stored back to the
percpu area. |
A Server-Side Request Forgery (SSRF) vulnerability exists in the MediaConnector class within the vLLM project's multimodal feature set. The load_from_url and load_from_url_async methods fetch and process media from user-provided URLs without adequate restrictions on the target hosts. This allows an attacker to coerce the vLLM server into making arbitrary requests to internal network resources. |
The NASA’s Interplanetary Overlay Network (ION) is an implementation of Delay/Disruption Tolerant Networking (DTN). A BPv7 bundle with a malformed extension block causes uncontrolled memory allocation inside ION-DTN 4.1.3s, leading to receiver thread termination and a Denial-of-Service (DoS). The triggering bundle contains an extension block starting at `0x85070201005bbb0e20b4ea001a000927c0...`. The first byte in the extension block (0x85) indicates a CBOR array of five elements of which the first four are numbers (0x07, 0x02, 0x01, 0x00) but the fifth element is a byte string of length 27 (`0x5bbb0e20b4ea001a000927c0...`). The vulnerability seems to be due to processing the fifth element of the array (i.e., the byte string) as replacing it with a number makes the vulnerability no longer be triggered. While parsing this extension block, ION obtains a very large block length, which in the code in `bei.c`:764) seems to be passed from `blockLength` which is an unsigned int, to a 32 bit signed integer `blkSize`. The unsigned to signed conversion causes `blkSize` to hold the value of -369092043, which is then converted into a 64-bit unsigned value inside `MTAKE(blkSize)`, resulting in an attempt to allocate an unrealistic amount of memory, causing the error. As of time of publication, no known patched versions of BPv7 exist. |
LLaMA-Factory is a tuning library for large language models. Prior to version 0.9.4, a Server-Side Request Forgery (SSRF) vulnerability in the chat API allows any authenticated user to force the server to make arbitrary HTTP requests to internal and external networks. This can lead to the exposure of sensitive internal services, reconnaissance of the internal network, or interaction with third-party services. The same mechanism also allows for a Local File Inclusion (LFI) vulnerability, enabling users to read arbitrary files from the server's filesystem. The vulnerability exists in the `_process_request` function within `src/llamafactory/api/chat.py.` This function is responsible for processing incoming multimodal content, including images, videos, and audio provided via URLs. The function checks if the provided URL is a base64 data URI or a local file path (`os.path.isfile`). If neither is true, it falls back to treating the URL as a web URI and makes a direct HTTP GET request using `requests.get(url, stream=True).raw` without any validation or sanitization of the URL. Version 0.9.4 fixes the underlying issue. |
CVE-2025-54088 is an open-redirect vulnerability in Secure
Access prior to version 14.10. Attackers with access to the console can
redirect victims to an arbitrary URL. The attack complexity is low, attack
requirements are present, no privileges are required, and users must actively
participate in the attack. Impact to confidentiality is low and there is no
impact to integrity or availability. There are high severity impacts to
confidentiality, integrity, availability in subsequent systems. |
CVE-2025-54087 is a server-side request forgery
vulnerability in Secure Access prior to version 14.10. Attackers with
administrative privileges can publish a crafted test HTTP request originating
from the Secure Access server. The attack complexity is high, there are no
attack requirements, and user interaction is required. There is no direct
impact to confidentiality, integrity, or availability. There is a low severity
subsequent system impact to integrity. |
Nagios Log Server before 2024R1.3.2 allows authenticated users (with read-only API access) to stop the Elasticsearch service via a /nagioslogserver/index.php/api/system/stop?subsystem=elasticsearch call. The service stops even though "message": "Could not stop elasticsearch" is in the API response. This is GL:NLS#474. |
Nagios Log Server before 2024R1.3.2 allows authenticated users to retrieve cleartext administrative API keys via a /nagioslogserver/index.php/api/system/get_users call. This is GL:NLS#475. |
Dell PowerProtect Data Domain with Data Domain Operating System (DD OS) of Feature Release versions 7.7.1.0 through 8.3.0.15, LTS2025 release version 8.3.1.0, LTS2024 release versions 7.13.1.0 through 7.13.1.30, LTS 2023 release versions 7.10.1.0 through 7.10.1.60, contain a Stack-based Buffer Overflow vulnerability in the DDSH CLI. A high privileged attacker with local access could potentially exploit this vulnerability, leading to Denial of service. |
Dell PowerProtect Data Domain with Data Domain Operating System (DD OS) of Feature Release versions 7.7.1.0 through 8.1.0.10, LTS2024 release Versions 7.13.1.0 through 7.13.1.25, LTS 2023 release versions 7.10.1.0 through 7.10.1.50, contain an incorrect Implementation of Authentication Algorithm vulnerability in the RestAPI. An unauthenticated attacker with remote access could potentially exploit this vulnerability, leading to Unauthorized access. |
Dell PowerProtect Data Domain with Data Domain Operating System (DD OS) of Feature Release versions 7.7.1.0 through 8.1.0.10, LTS2024 release Versions 7.13.1.0 through 7.13.1.25, LTS 2023 release versions 7.10.1.0 through 7.10.1.50, contain an Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection') vulnerability. A high privileged attacker with local access could potentially exploit this vulnerability to execute arbitrary commands with root privileges. |
Dell PowerProtect Data Domain with Data Domain Operating System (DD OS) of Feature Release versions 7.7.1.0 through 8.1.0.10, LTS2024 release Versions 7.13.1.0 through 7.13.1.25, LTS 2023 release versions 7.10.1.0 through 7.10.1.50, contain an Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection') vulnerability. A high privileged attacker with local access could potentially exploit this vulnerability, leading to arbitrary command execution. Exploitation may allow privilege escalation to root. |
Dell PowerProtect Data Domain with Data Domain Operating System (DD OS) of Feature Release versions 7.7.1.0 through 8.1.0.10, LTS2024 release Versions 7.13.1.0 through 7.13.1.25, LTS 2023 release versions 7.10.1.0 through 7.10.1.50, contain an Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection') vulnerability. A high privileged attacker with local access could potentially exploit this vulnerability, leading to arbitrary command execution. Exploitation may allow privilege escalation to root. |
Improper Link Resolution Before File Access in the AWS VPN Client for macOS versions 1.3.2- 5.2.0 allows a local user to execute code with elevated privileges. Insufficient validation checks on the log destination directory during log rotation could allow a non-administrator user to create a symlink from a client log file to a privileged location. On log rotation, this could lead to code execution with root privileges if the user made crafted API calls which injected arbitrary code into the log file. We recommend users upgrade to AWS VPN Client for macOS 5.2.1 or the latest version. |
A security flaw has been discovered in kaifangqian kaifangqian-base up to 7b3faecda13848b3ced6c17c7423b76c5b47b8ab. This issue affects the function getAllUsers of the file kaifangqian-parent/kaifangqian-system/src/main/java/com/kaifangqian/modules/system/controller/SysUserController.java. The manipulation results in information disclosure. The attack can be launched remotely. The exploit has been released to the public and may be exploited. This product does not use versioning. This is why information about affected and unaffected releases are unavailable. |
SummerNote v0.9.1 is vulnerable to Cross Site Scripting (XSS) via the Code View Function. |
In the Linux kernel, the following vulnerability has been resolved:
net: hsr: must allocate more bytes for RedBox support
Blamed commit forgot to change hsr_init_skb() to allocate
larger skb for RedBox case.
Indeed, send_hsr_supervision_frame() will add
two additional components (struct hsr_sup_tlv
and struct hsr_sup_payload)
syzbot reported the following crash:
skbuff: skb_over_panic: text:ffffffff8afd4b0a len:34 put:6 head:ffff88802ad29e00 data:ffff88802ad29f22 tail:0x144 end:0x140 dev:gretap0
------------[ cut here ]------------
kernel BUG at net/core/skbuff.c:206 !
Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN NOPTI
CPU: 2 UID: 0 PID: 7611 Comm: syz-executor Not tainted 6.12.0-syzkaller #0
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
RIP: 0010:skb_panic+0x157/0x1d0 net/core/skbuff.c:206
Code: b6 04 01 84 c0 74 04 3c 03 7e 21 8b 4b 70 41 56 45 89 e8 48 c7 c7 a0 7d 9b 8c 41 57 56 48 89 ee 52 4c 89 e2 e8 9a 76 79 f8 90 <0f> 0b 4c 89 4c 24 10 48 89 54 24 08 48 89 34 24 e8 94 76 fb f8 4c
RSP: 0018:ffffc90000858ab8 EFLAGS: 00010282
RAX: 0000000000000087 RBX: ffff8880598c08c0 RCX: ffffffff816d3e69
RDX: 0000000000000000 RSI: ffffffff816de786 RDI: 0000000000000005
RBP: ffffffff8c9b91c0 R08: 0000000000000005 R09: 0000000000000000
R10: 0000000000000302 R11: ffffffff961cc1d0 R12: ffffffff8afd4b0a
R13: 0000000000000006 R14: ffff88804b938130 R15: 0000000000000140
FS: 000055558a3d6500(0000) GS:ffff88806a800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f1295974ff8 CR3: 000000002ab6e000 CR4: 0000000000352ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<IRQ>
skb_over_panic net/core/skbuff.c:211 [inline]
skb_put+0x174/0x1b0 net/core/skbuff.c:2617
send_hsr_supervision_frame+0x6fa/0x9e0 net/hsr/hsr_device.c:342
hsr_proxy_announce+0x1a3/0x4a0 net/hsr/hsr_device.c:436
call_timer_fn+0x1a0/0x610 kernel/time/timer.c:1794
expire_timers kernel/time/timer.c:1845 [inline]
__run_timers+0x6e8/0x930 kernel/time/timer.c:2419
__run_timer_base kernel/time/timer.c:2430 [inline]
__run_timer_base kernel/time/timer.c:2423 [inline]
run_timer_base+0x111/0x190 kernel/time/timer.c:2439
run_timer_softirq+0x1a/0x40 kernel/time/timer.c:2449
handle_softirqs+0x213/0x8f0 kernel/softirq.c:554
__do_softirq kernel/softirq.c:588 [inline]
invoke_softirq kernel/softirq.c:428 [inline]
__irq_exit_rcu kernel/softirq.c:637 [inline]
irq_exit_rcu+0xbb/0x120 kernel/softirq.c:649
instr_sysvec_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1049 [inline]
sysvec_apic_timer_interrupt+0xa4/0xc0 arch/x86/kernel/apic/apic.c:1049
</IRQ> |
In the Linux kernel, the following vulnerability has been resolved:
tracing: Build event generation tests only as modules
The kprobes and synth event generation test modules add events and lock
(get a reference) those event file reference in module init function,
and unlock and delete it in module exit function. This is because those
are designed for playing as modules.
If we make those modules as built-in, those events are left locked in the
kernel, and never be removed. This causes kprobe event self-test failure
as below.
[ 97.349708] ------------[ cut here ]------------
[ 97.353453] WARNING: CPU: 3 PID: 1 at kernel/trace/trace_kprobe.c:2133 kprobe_trace_self_tests_init+0x3f1/0x480
[ 97.357106] Modules linked in:
[ 97.358488] CPU: 3 PID: 1 Comm: swapper/0 Not tainted 6.9.0-g699646734ab5-dirty #14
[ 97.361556] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
[ 97.363880] RIP: 0010:kprobe_trace_self_tests_init+0x3f1/0x480
[ 97.365538] Code: a8 24 08 82 e9 ae fd ff ff 90 0f 0b 90 48 c7 c7 e5 aa 0b 82 e9 ee fc ff ff 90 0f 0b 90 48 c7 c7 2d 61 06 82 e9 8e fd ff ff 90 <0f> 0b 90 48 c7 c7 33 0b 0c 82 89 c6 e8 6e 03 1f ff 41 ff c7 e9 90
[ 97.370429] RSP: 0000:ffffc90000013b50 EFLAGS: 00010286
[ 97.371852] RAX: 00000000fffffff0 RBX: ffff888005919c00 RCX: 0000000000000000
[ 97.373829] RDX: ffff888003f40000 RSI: ffffffff8236a598 RDI: ffff888003f40a68
[ 97.375715] RBP: 0000000000000000 R08: 0000000000000001 R09: 0000000000000000
[ 97.377675] R10: ffffffff811c9ae5 R11: ffffffff8120c4e0 R12: 0000000000000000
[ 97.379591] R13: 0000000000000001 R14: 0000000000000015 R15: 0000000000000000
[ 97.381536] FS: 0000000000000000(0000) GS:ffff88807dcc0000(0000) knlGS:0000000000000000
[ 97.383813] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 97.385449] CR2: 0000000000000000 CR3: 0000000002244000 CR4: 00000000000006b0
[ 97.387347] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 97.389277] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 97.391196] Call Trace:
[ 97.391967] <TASK>
[ 97.392647] ? __warn+0xcc/0x180
[ 97.393640] ? kprobe_trace_self_tests_init+0x3f1/0x480
[ 97.395181] ? report_bug+0xbd/0x150
[ 97.396234] ? handle_bug+0x3e/0x60
[ 97.397311] ? exc_invalid_op+0x1a/0x50
[ 97.398434] ? asm_exc_invalid_op+0x1a/0x20
[ 97.399652] ? trace_kprobe_is_busy+0x20/0x20
[ 97.400904] ? tracing_reset_all_online_cpus+0x15/0x90
[ 97.402304] ? kprobe_trace_self_tests_init+0x3f1/0x480
[ 97.403773] ? init_kprobe_trace+0x50/0x50
[ 97.404972] do_one_initcall+0x112/0x240
[ 97.406113] do_initcall_level+0x95/0xb0
[ 97.407286] ? kernel_init+0x1a/0x1a0
[ 97.408401] do_initcalls+0x3f/0x70
[ 97.409452] kernel_init_freeable+0x16f/0x1e0
[ 97.410662] ? rest_init+0x1f0/0x1f0
[ 97.411738] kernel_init+0x1a/0x1a0
[ 97.412788] ret_from_fork+0x39/0x50
[ 97.413817] ? rest_init+0x1f0/0x1f0
[ 97.414844] ret_from_fork_asm+0x11/0x20
[ 97.416285] </TASK>
[ 97.417134] irq event stamp: 13437323
[ 97.418376] hardirqs last enabled at (13437337): [<ffffffff8110bc0c>] console_unlock+0x11c/0x150
[ 97.421285] hardirqs last disabled at (13437370): [<ffffffff8110bbf1>] console_unlock+0x101/0x150
[ 97.423838] softirqs last enabled at (13437366): [<ffffffff8108e17f>] handle_softirqs+0x23f/0x2a0
[ 97.426450] softirqs last disabled at (13437393): [<ffffffff8108e346>] __irq_exit_rcu+0x66/0xd0
[ 97.428850] ---[ end trace 0000000000000000 ]---
And also, since we can not cleanup dynamic_event file, ftracetest are
failed too.
To avoid these issues, build these tests only as modules. |