| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Use after free in Microsoft Brokering File System allows an authorized attacker to elevate privileges locally. |
| Use after free in Microsoft Office Word allows an unauthorized attacker to execute code locally. |
| Use after free in Microsoft Office Word allows an unauthorized attacker to execute code locally. |
| Use after free in Microsoft Office allows an unauthorized attacker to execute code locally. |
| Use after free in Microsoft Office Word allows an unauthorized attacker to execute code locally. |
| Use after free in Microsoft Office Excel allows an unauthorized attacker to execute code locally. |
| Use after free in Windows DirectX allows an authorized attacker to elevate privileges locally. |
| Use after free in Microsoft Office Excel allows an unauthorized attacker to execute code locally. |
| Use after free in Microsoft Office Outlook allows an unauthorized attacker to execute code locally. |
| Use of uninitialized resource in Windows Remote Access Connection Manager allows an authorized attacker to elevate privileges locally. |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Microsoft Brokering File System allows an authorized attacker to elevate privileges locally. |
| In the Linux kernel, the following vulnerability has been resolved:
exfat: fix double free in delayed_free
The double free could happen in the following path.
exfat_create_upcase_table()
exfat_create_upcase_table() : return error
exfat_free_upcase_table() : free ->vol_utbl
exfat_load_default_upcase_table : return error
exfat_kill_sb()
delayed_free()
exfat_free_upcase_table() <--------- double free
This patch set ->vol_util as NULL after freeing it. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/iwcm: Fix use-after-free of work objects after cm_id destruction
The commit 59c68ac31e15 ("iw_cm: free cm_id resources on the last
deref") simplified cm_id resource management by freeing cm_id once all
references to the cm_id were removed. The references are removed either
upon completion of iw_cm event handlers or when the application destroys
the cm_id. This commit introduced the use-after-free condition where
cm_id_private object could still be in use by event handler works during
the destruction of cm_id. The commit aee2424246f9 ("RDMA/iwcm: Fix a
use-after-free related to destroying CM IDs") addressed this use-after-
free by flushing all pending works at the cm_id destruction.
However, still another use-after-free possibility remained. It happens
with the work objects allocated for each cm_id_priv within
alloc_work_entries() during cm_id creation, and subsequently freed in
dealloc_work_entries() once all references to the cm_id are removed.
If the cm_id's last reference is decremented in the event handler work,
the work object for the work itself gets removed, and causes the use-
after-free BUG below:
BUG: KASAN: slab-use-after-free in __pwq_activate_work+0x1ff/0x250
Read of size 8 at addr ffff88811f9cf800 by task kworker/u16:1/147091
CPU: 2 UID: 0 PID: 147091 Comm: kworker/u16:1 Not tainted 6.15.0-rc2+ #27 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-3.fc41 04/01/2014
Workqueue: 0x0 (iw_cm_wq)
Call Trace:
<TASK>
dump_stack_lvl+0x6a/0x90
print_report+0x174/0x554
? __virt_addr_valid+0x208/0x430
? __pwq_activate_work+0x1ff/0x250
kasan_report+0xae/0x170
? __pwq_activate_work+0x1ff/0x250
__pwq_activate_work+0x1ff/0x250
pwq_dec_nr_in_flight+0x8c5/0xfb0
process_one_work+0xc11/0x1460
? __pfx_process_one_work+0x10/0x10
? assign_work+0x16c/0x240
worker_thread+0x5ef/0xfd0
? __pfx_worker_thread+0x10/0x10
kthread+0x3b0/0x770
? __pfx_kthread+0x10/0x10
? rcu_is_watching+0x11/0xb0
? _raw_spin_unlock_irq+0x24/0x50
? rcu_is_watching+0x11/0xb0
? __pfx_kthread+0x10/0x10
ret_from_fork+0x30/0x70
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
Allocated by task 147416:
kasan_save_stack+0x2c/0x50
kasan_save_track+0x10/0x30
__kasan_kmalloc+0xa6/0xb0
alloc_work_entries+0xa9/0x260 [iw_cm]
iw_cm_connect+0x23/0x4a0 [iw_cm]
rdma_connect_locked+0xbfd/0x1920 [rdma_cm]
nvme_rdma_cm_handler+0x8e5/0x1b60 [nvme_rdma]
cma_cm_event_handler+0xae/0x320 [rdma_cm]
cma_work_handler+0x106/0x1b0 [rdma_cm]
process_one_work+0x84f/0x1460
worker_thread+0x5ef/0xfd0
kthread+0x3b0/0x770
ret_from_fork+0x30/0x70
ret_from_fork_asm+0x1a/0x30
Freed by task 147091:
kasan_save_stack+0x2c/0x50
kasan_save_track+0x10/0x30
kasan_save_free_info+0x37/0x60
__kasan_slab_free+0x4b/0x70
kfree+0x13a/0x4b0
dealloc_work_entries+0x125/0x1f0 [iw_cm]
iwcm_deref_id+0x6f/0xa0 [iw_cm]
cm_work_handler+0x136/0x1ba0 [iw_cm]
process_one_work+0x84f/0x1460
worker_thread+0x5ef/0xfd0
kthread+0x3b0/0x770
ret_from_fork+0x30/0x70
ret_from_fork_asm+0x1a/0x30
Last potentially related work creation:
kasan_save_stack+0x2c/0x50
kasan_record_aux_stack+0xa3/0xb0
__queue_work+0x2ff/0x1390
queue_work_on+0x67/0xc0
cm_event_handler+0x46a/0x820 [iw_cm]
siw_cm_upcall+0x330/0x650 [siw]
siw_cm_work_handler+0x6b9/0x2b20 [siw]
process_one_work+0x84f/0x1460
worker_thread+0x5ef/0xfd0
kthread+0x3b0/0x770
ret_from_fork+0x30/0x70
ret_from_fork_asm+0x1a/0x30
This BUG is reproducible by repeating the blktests test case nvme/061
for the rdma transport and the siw driver.
To avoid the use-after-free of cm_id_private work objects, ensure that
the last reference to the cm_id is decremented not in the event handler
works, but in the cm_id destruction context. For that purpose, mo
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
ipc: fix to protect IPCS lookups using RCU
syzbot reported that it discovered a use-after-free vulnerability, [0]
[0]: https://lore.kernel.org/all/67af13f8.050a0220.21dd3.0038.GAE@google.com/
idr_for_each() is protected by rwsem, but this is not enough. If it is
not protected by RCU read-critical region, when idr_for_each() calls
radix_tree_node_free() through call_rcu() to free the radix_tree_node
structure, the node will be freed immediately, and when reading the next
node in radix_tree_for_each_slot(), the already freed memory may be read.
Therefore, we need to add code to make sure that idr_for_each() is
protected within the RCU read-critical region when we call it in
shm_destroy_orphaned(). |
| In the Linux kernel, the following vulnerability has been resolved:
bpf, sockmap: Avoid using sk_socket after free when sending
The sk->sk_socket is not locked or referenced in backlog thread, and
during the call to skb_send_sock(), there is a race condition with
the release of sk_socket. All types of sockets(tcp/udp/unix/vsock)
will be affected.
Race conditions:
'''
CPU0 CPU1
backlog::skb_send_sock
sendmsg_unlocked
sock_sendmsg
sock_sendmsg_nosec
close(fd):
...
ops->release() -> sock_map_close()
sk_socket->ops = NULL
free(socket)
sock->ops->sendmsg
^
panic here
'''
The ref of psock become 0 after sock_map_close() executed.
'''
void sock_map_close()
{
...
if (likely(psock)) {
...
// !! here we remove psock and the ref of psock become 0
sock_map_remove_links(sk, psock)
psock = sk_psock_get(sk);
if (unlikely(!psock))
goto no_psock; <=== Control jumps here via goto
...
cancel_delayed_work_sync(&psock->work); <=== not executed
sk_psock_put(sk, psock);
...
}
'''
Based on the fact that we already wait for the workqueue to finish in
sock_map_close() if psock is held, we simply increase the psock
reference count to avoid race conditions.
With this patch, if the backlog thread is running, sock_map_close() will
wait for the backlog thread to complete and cancel all pending work.
If no backlog running, any pending work that hasn't started by then will
fail when invoked by sk_psock_get(), as the psock reference count have
been zeroed, and sk_psock_drop() will cancel all jobs via
cancel_delayed_work_sync().
In summary, we require synchronization to coordinate the backlog thread
and close() thread.
The panic I catched:
'''
Workqueue: events sk_psock_backlog
RIP: 0010:sock_sendmsg+0x21d/0x440
RAX: 0000000000000000 RBX: ffffc9000521fad8 RCX: 0000000000000001
...
Call Trace:
<TASK>
? die_addr+0x40/0xa0
? exc_general_protection+0x14c/0x230
? asm_exc_general_protection+0x26/0x30
? sock_sendmsg+0x21d/0x440
? sock_sendmsg+0x3e0/0x440
? __pfx_sock_sendmsg+0x10/0x10
__skb_send_sock+0x543/0xb70
sk_psock_backlog+0x247/0xb80
...
''' |
| Use after free in WebGPU in Google Chrome prior to 143.0.7499.147 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High) |
| In the Linux kernel, the following vulnerability has been resolved:
media: vidtv: Terminating the subsequent process of initialization failure
syzbot reported a slab-use-after-free Read in vidtv_mux_init. [1]
After PSI initialization fails, the si member is accessed again, resulting
in this uaf.
After si initialization fails, the subsequent process needs to be exited.
[1]
BUG: KASAN: slab-use-after-free in vidtv_mux_pid_ctx_init drivers/media/test-drivers/vidtv/vidtv_mux.c:78 [inline]
BUG: KASAN: slab-use-after-free in vidtv_mux_init+0xac2/0xbe0 drivers/media/test-drivers/vidtv/vidtv_mux.c:524
Read of size 8 at addr ffff88802fa42acc by task syz.2.37/6059
CPU: 0 UID: 0 PID: 6059 Comm: syz.2.37 Not tainted 6.14.0-rc5-syzkaller #0
Hardware name: Google Compute Engine, BIOS Google 02/12/2025
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:408 [inline]
print_report+0xc3/0x670 mm/kasan/report.c:521
kasan_report+0xd9/0x110 mm/kasan/report.c:634
vidtv_mux_pid_ctx_init drivers/media/test-drivers/vidtv/vidtv_mux.c:78
vidtv_mux_init+0xac2/0xbe0 drivers/media/test-drivers/vidtv/vidtv_mux.c:524
vidtv_start_streaming drivers/media/test-drivers/vidtv/vidtv_bridge.c:194
vidtv_start_feed drivers/media/test-drivers/vidtv/vidtv_bridge.c:239
dmx_section_feed_start_filtering drivers/media/dvb-core/dvb_demux.c:973
dvb_dmxdev_feed_start drivers/media/dvb-core/dmxdev.c:508 [inline]
dvb_dmxdev_feed_restart.isra.0 drivers/media/dvb-core/dmxdev.c:537
dvb_dmxdev_filter_stop+0x2b4/0x3a0 drivers/media/dvb-core/dmxdev.c:564
dvb_dmxdev_filter_free drivers/media/dvb-core/dmxdev.c:840 [inline]
dvb_demux_release+0x92/0x550 drivers/media/dvb-core/dmxdev.c:1246
__fput+0x3ff/0xb70 fs/file_table.c:464
task_work_run+0x14e/0x250 kernel/task_work.c:227
exit_task_work include/linux/task_work.h:40 [inline]
do_exit+0xad8/0x2d70 kernel/exit.c:938
do_group_exit+0xd3/0x2a0 kernel/exit.c:1087
__do_sys_exit_group kernel/exit.c:1098 [inline]
__se_sys_exit_group kernel/exit.c:1096 [inline]
__x64_sys_exit_group+0x3e/0x50 kernel/exit.c:1096
x64_sys_call+0x151f/0x1720 arch/x86/include/generated/asm/syscalls_64.h:232
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f871d58d169
Code: Unable to access opcode bytes at 0x7f871d58d13f.
RSP: 002b:00007fff4b19a788 EFLAGS: 00000246 ORIG_RAX: 00000000000000e7
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f871d58d169
RDX: 0000000000000064 RSI: 0000000000000000 RDI: 0000000000000000
RBP: 00007fff4b19a7ec R08: 0000000b4b19a87f R09: 00000000000927c0
R10: 0000000000000001 R11: 0000000000000246 R12: 0000000000000003
R13: 00000000000927c0 R14: 000000000001d553 R15: 00007fff4b19a840
</TASK>
Allocated by task 6059:
kasan_save_stack+0x33/0x60 mm/kasan/common.c:47
kasan_save_track+0x14/0x30 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
__kasan_kmalloc+0xaa/0xb0 mm/kasan/common.c:394
kmalloc_noprof include/linux/slab.h:901 [inline]
kzalloc_noprof include/linux/slab.h:1037 [inline]
vidtv_psi_pat_table_init drivers/media/test-drivers/vidtv/vidtv_psi.c:970
vidtv_channel_si_init drivers/media/test-drivers/vidtv/vidtv_channel.c:423
vidtv_mux_init drivers/media/test-drivers/vidtv/vidtv_mux.c:519
vidtv_start_streaming drivers/media/test-drivers/vidtv/vidtv_bridge.c:194
vidtv_start_feed drivers/media/test-drivers/vidtv/vidtv_bridge.c:239
dmx_section_feed_start_filtering drivers/media/dvb-core/dvb_demux.c:973
dvb_dmxdev_feed_start drivers/media/dvb-core/dmxdev.c:508 [inline]
dvb_dmxdev_feed_restart.isra.0 drivers/media/dvb-core/dmxdev.c:537
dvb_dmxdev_filter_stop+0x2b4/0x3a0 drivers/media/dvb-core/dmxdev.c:564
dvb_dmxdev_filter_free drivers/media/dvb-core/dmxdev.c:840 [inline]
dvb_demux_release+0x92/0x550 drivers/media/dvb-core/dmxdev.c:1246
__fput+0x3ff/0xb70 fs/file_tabl
---truncated--- |
| A use-after-free issue was addressed with improved memory management. This issue is fixed in macOS Tahoe 26.2, iOS 26.2 and iPadOS 26.2, Safari 26.2, iOS 18.7.3 and iPadOS 18.7.3. Processing maliciously crafted web content may lead to an unexpected process crash. |
| In the Linux kernel, the following vulnerability has been resolved:
af_unix: Don't leave consecutive consumed OOB skbs.
Jann Horn reported a use-after-free in unix_stream_read_generic().
The following sequences reproduce the issue:
$ python3
from socket import *
s1, s2 = socketpair(AF_UNIX, SOCK_STREAM)
s1.send(b'x', MSG_OOB)
s2.recv(1, MSG_OOB) # leave a consumed OOB skb
s1.send(b'y', MSG_OOB)
s2.recv(1, MSG_OOB) # leave a consumed OOB skb
s1.send(b'z', MSG_OOB)
s2.recv(1) # recv 'z' illegally
s2.recv(1, MSG_OOB) # access 'z' skb (use-after-free)
Even though a user reads OOB data, the skb holding the data stays on
the recv queue to mark the OOB boundary and break the next recv().
After the last send() in the scenario above, the sk2's recv queue has
2 leading consumed OOB skbs and 1 real OOB skb.
Then, the following happens during the next recv() without MSG_OOB
1. unix_stream_read_generic() peeks the first consumed OOB skb
2. manage_oob() returns the next consumed OOB skb
3. unix_stream_read_generic() fetches the next not-yet-consumed OOB skb
4. unix_stream_read_generic() reads and frees the OOB skb
, and the last recv(MSG_OOB) triggers KASAN splat.
The 3. above occurs because of the SO_PEEK_OFF code, which does not
expect unix_skb_len(skb) to be 0, but this is true for such consumed
OOB skbs.
while (skip >= unix_skb_len(skb)) {
skip -= unix_skb_len(skb);
skb = skb_peek_next(skb, &sk->sk_receive_queue);
...
}
In addition to this use-after-free, there is another issue that
ioctl(SIOCATMARK) does not function properly with consecutive consumed
OOB skbs.
So, nothing good comes out of such a situation.
Instead of complicating manage_oob(), ioctl() handling, and the next
ECONNRESET fix by introducing a loop for consecutive consumed OOB skbs,
let's not leave such consecutive OOB unnecessarily.
Now, while receiving an OOB skb in unix_stream_recv_urg(), if its
previous skb is a consumed OOB skb, it is freed.
[0]:
BUG: KASAN: slab-use-after-free in unix_stream_read_actor (net/unix/af_unix.c:3027)
Read of size 4 at addr ffff888106ef2904 by task python3/315
CPU: 2 UID: 0 PID: 315 Comm: python3 Not tainted 6.16.0-rc1-00407-gec315832f6f9 #8 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-4.fc42 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl (lib/dump_stack.c:122)
print_report (mm/kasan/report.c:409 mm/kasan/report.c:521)
kasan_report (mm/kasan/report.c:636)
unix_stream_read_actor (net/unix/af_unix.c:3027)
unix_stream_read_generic (net/unix/af_unix.c:2708 net/unix/af_unix.c:2847)
unix_stream_recvmsg (net/unix/af_unix.c:3048)
sock_recvmsg (net/socket.c:1063 (discriminator 20) net/socket.c:1085 (discriminator 20))
__sys_recvfrom (net/socket.c:2278)
__x64_sys_recvfrom (net/socket.c:2291 (discriminator 1) net/socket.c:2287 (discriminator 1) net/socket.c:2287 (discriminator 1))
do_syscall_64 (arch/x86/entry/syscall_64.c:63 (discriminator 1) arch/x86/entry/syscall_64.c:94 (discriminator 1))
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
RIP: 0033:0x7f8911fcea06
Code: 5d e8 41 8b 93 08 03 00 00 59 5e 48 83 f8 fc 75 19 83 e2 39 83 fa 08 75 11 e8 26 ff ff ff 66 0f 1f 44 00 00 48 8b 45 10 0f 05 <48> 8b 5d f8 c9 c3 0f 1f 40 00 f3 0f 1e fa 55 48 89 e5 48 83 ec 08
RSP: 002b:00007fffdb0dccb0 EFLAGS: 00000202 ORIG_RAX: 000000000000002d
RAX: ffffffffffffffda RBX: 00007fffdb0dcdc8 RCX: 00007f8911fcea06
RDX: 0000000000000001 RSI: 00007f8911a5e060 RDI: 0000000000000006
RBP: 00007fffdb0dccd0 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000202 R12: 00007f89119a7d20
R13: ffffffffc4653600 R14: 0000000000000000 R15: 0000000000000000
</TASK>
Allocated by task 315:
kasan_save_stack (mm/kasan/common.c:48)
kasan_save_track (mm/kasan/common.c:60 (discriminator 1) mm/kasan/common.c:69 (discriminator 1))
__kasan_slab_alloc (mm/kasan/common.c:348)
kmem_cache_alloc_
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
rose: fix dangling neighbour pointers in rose_rt_device_down()
There are two bugs in rose_rt_device_down() that can cause
use-after-free:
1. The loop bound `t->count` is modified within the loop, which can
cause the loop to terminate early and miss some entries.
2. When removing an entry from the neighbour array, the subsequent entries
are moved up to fill the gap, but the loop index `i` is still
incremented, causing the next entry to be skipped.
For example, if a node has three neighbours (A, A, B) with count=3 and A
is being removed, the second A is not checked.
i=0: (A, A, B) -> (A, B) with count=2
^ checked
i=1: (A, B) -> (A, B) with count=2
^ checked (B, not A!)
i=2: (doesn't occur because i < count is false)
This leaves the second A in the array with count=2, but the rose_neigh
structure has been freed. Code that accesses these entries assumes that
the first `count` entries are valid pointers, causing a use-after-free
when it accesses the dangling pointer.
Fix both issues by iterating over the array in reverse order with a fixed
loop bound. This ensures that all entries are examined and that the removal
of an entry doesn't affect subsequent iterations. |