| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| It was possible to prevent a user from exiting pointerlock when pressing escape and to overlay customValidity notifications from a `<select>` element over certain permission prompts. This could be used to confuse a user into giving a site unintended permissions. This vulnerability affects Firefox < 128 and Thunderbird < 128. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/slab: make __free(kfree) accept error pointers
Currently, if an automatically freed allocation is an error pointer that
will lead to a crash. An example of this is in wm831x_gpio_dbg_show().
171 char *label __free(kfree) = gpiochip_dup_line_label(chip, i);
172 if (IS_ERR(label)) {
173 dev_err(wm831x->dev, "Failed to duplicate label\n");
174 continue;
175 }
The auto clean up function should check for error pointers as well,
otherwise we're going to keep hitting issues like this. |
| The implementation of atob in "Zabbix JS" allows to create a string with arbitrary content and use it to access internal properties of objects. |
| In the Linux kernel, the following vulnerability has been resolved:
efi/libstub: Free correct pointer on failure
cmdline_ptr is an out parameter, which is not allocated by the function
itself, and likely points into the caller's stack.
cmdline refers to the pool allocation that should be freed when cleaning
up after a failure, so pass this instead to free_pool(). |
| In the Linux kernel, the following vulnerability has been resolved:
kunit/fortify: Fix mismatched kvalloc()/vfree() usage
The kv*() family of tests were accidentally freeing with vfree() instead
of kvfree(). Use kvfree() instead. |
| A weakness has been identified in OGRECave Ogre up to 14.4.1. Impacted is the function STBIImageCodec::encode of the file /ogre/PlugIns/STBICodec/src/OgreSTBICodec.cpp. This manipulation causes mismatched memory management routines. The attack is restricted to local execution. The exploit has been made available to the public and could be exploited. |
| Memory corruption while handling invalid inputs in application info setup. |
| In the Linux kernel, the following vulnerability has been resolved:
cpufreq: schedutil: Use kobject release() method to free sugov_tunables
The struct sugov_tunables is protected by the kobject, so we can't free
it directly. Otherwise we would get a call trace like this:
ODEBUG: free active (active state 0) object type: timer_list hint: delayed_work_timer_fn+0x0/0x30
WARNING: CPU: 3 PID: 720 at lib/debugobjects.c:505 debug_print_object+0xb8/0x100
Modules linked in:
CPU: 3 PID: 720 Comm: a.sh Tainted: G W 5.14.0-rc1-next-20210715-yocto-standard+ #507
Hardware name: Marvell OcteonTX CN96XX board (DT)
pstate: 40400009 (nZcv daif +PAN -UAO -TCO BTYPE=--)
pc : debug_print_object+0xb8/0x100
lr : debug_print_object+0xb8/0x100
sp : ffff80001ecaf910
x29: ffff80001ecaf910 x28: ffff00011b10b8d0 x27: ffff800011043d80
x26: ffff00011a8f0000 x25: ffff800013cb3ff0 x24: 0000000000000000
x23: ffff80001142aa68 x22: ffff800011043d80 x21: ffff00010de46f20
x20: ffff800013c0c520 x19: ffff800011d8f5b0 x18: 0000000000000010
x17: 6e6968207473696c x16: 5f72656d6974203a x15: 6570797420746365
x14: 6a626f2029302065 x13: 303378302f307830 x12: 2b6e665f72656d69
x11: ffff8000124b1560 x10: ffff800012331520 x9 : ffff8000100ca6b0
x8 : 000000000017ffe8 x7 : c0000000fffeffff x6 : 0000000000000001
x5 : ffff800011d8c000 x4 : ffff800011d8c740 x3 : 0000000000000000
x2 : ffff0001108301c0 x1 : ab3c90eedf9c0f00 x0 : 0000000000000000
Call trace:
debug_print_object+0xb8/0x100
__debug_check_no_obj_freed+0x1c0/0x230
debug_check_no_obj_freed+0x20/0x88
slab_free_freelist_hook+0x154/0x1c8
kfree+0x114/0x5d0
sugov_exit+0xbc/0xc0
cpufreq_exit_governor+0x44/0x90
cpufreq_set_policy+0x268/0x4a8
store_scaling_governor+0xe0/0x128
store+0xc0/0xf0
sysfs_kf_write+0x54/0x80
kernfs_fop_write_iter+0x128/0x1c0
new_sync_write+0xf0/0x190
vfs_write+0x2d4/0x478
ksys_write+0x74/0x100
__arm64_sys_write+0x24/0x30
invoke_syscall.constprop.0+0x54/0xe0
do_el0_svc+0x64/0x158
el0_svc+0x2c/0xb0
el0t_64_sync_handler+0xb0/0xb8
el0t_64_sync+0x198/0x19c
irq event stamp: 5518
hardirqs last enabled at (5517): [<ffff8000100cbd7c>] console_unlock+0x554/0x6c8
hardirqs last disabled at (5518): [<ffff800010fc0638>] el1_dbg+0x28/0xa0
softirqs last enabled at (5504): [<ffff8000100106e0>] __do_softirq+0x4d0/0x6c0
softirqs last disabled at (5483): [<ffff800010049548>] irq_exit+0x1b0/0x1b8
So split the original sugov_tunables_free() into two functions,
sugov_clear_global_tunables() is just used to clear the global_tunables
and the new sugov_tunables_free() is used as kobj_type::release to
release the sugov_tunables safely. |
| In the Linux kernel, the following vulnerability has been resolved:
bcachefs: kvfree bch_fs::snapshots in bch2_fs_snapshots_exit
bch_fs::snapshots is allocated by kvzalloc in __snapshot_t_mut.
It should be freed by kvfree not kfree.
Or umount will triger:
[ 406.829178 ] BUG: unable to handle page fault for address: ffffe7b487148008
[ 406.830676 ] #PF: supervisor read access in kernel mode
[ 406.831643 ] #PF: error_code(0x0000) - not-present page
[ 406.832487 ] PGD 0 P4D 0
[ 406.832898 ] Oops: 0000 [#1] PREEMPT SMP PTI
[ 406.833512 ] CPU: 2 PID: 1754 Comm: umount Kdump: loaded Tainted: G OE 6.7.0-rc7-custom+ #90
[ 406.834746 ] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.3-1-1 04/01/2014
[ 406.835796 ] RIP: 0010:kfree+0x62/0x140
[ 406.836197 ] Code: 80 48 01 d8 0f 82 e9 00 00 00 48 c7 c2 00 00 00 80 48 2b 15 78 9f 1f 01 48 01 d0 48 c1 e8 0c 48 c1 e0 06 48 03 05 56 9f 1f 01 <48> 8b 50 08 48 89 c7 f6 c2 01 0f 85 b0 00 00 00 66 90 48 8b 07 f6
[ 406.837810 ] RSP: 0018:ffffb9d641607e48 EFLAGS: 00010286
[ 406.838213 ] RAX: ffffe7b487148000 RBX: ffffb9d645200000 RCX: ffffb9d641607dc4
[ 406.838738 ] RDX: 000065bb00000000 RSI: ffffffffc0d88b84 RDI: ffffb9d645200000
[ 406.839217 ] RBP: ffff9a4625d00068 R08: 0000000000000001 R09: 0000000000000001
[ 406.839650 ] R10: 0000000000000001 R11: 000000000000001f R12: ffff9a4625d4da80
[ 406.840055 ] R13: ffff9a4625d00000 R14: ffffffffc0e2eb20 R15: 0000000000000000
[ 406.840451 ] FS: 00007f0a264ffb80(0000) GS:ffff9a4e2d500000(0000) knlGS:0000000000000000
[ 406.840851 ] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 406.841125 ] CR2: ffffe7b487148008 CR3: 000000018c4d2000 CR4: 00000000000006f0
[ 406.841464 ] Call Trace:
[ 406.841583 ] <TASK>
[ 406.841682 ] ? __die+0x1f/0x70
[ 406.841828 ] ? page_fault_oops+0x159/0x470
[ 406.842014 ] ? fixup_exception+0x22/0x310
[ 406.842198 ] ? exc_page_fault+0x1ed/0x200
[ 406.842382 ] ? asm_exc_page_fault+0x22/0x30
[ 406.842574 ] ? bch2_fs_release+0x54/0x280 [bcachefs]
[ 406.842842 ] ? kfree+0x62/0x140
[ 406.842988 ] ? kfree+0x104/0x140
[ 406.843138 ] bch2_fs_release+0x54/0x280 [bcachefs]
[ 406.843390 ] kobject_put+0xb7/0x170
[ 406.843552 ] deactivate_locked_super+0x2f/0xa0
[ 406.843756 ] cleanup_mnt+0xba/0x150
[ 406.843917 ] task_work_run+0x59/0xa0
[ 406.844083 ] exit_to_user_mode_prepare+0x197/0x1a0
[ 406.844302 ] syscall_exit_to_user_mode+0x16/0x40
[ 406.844510 ] do_syscall_64+0x4e/0xf0
[ 406.844675 ] entry_SYSCALL_64_after_hwframe+0x6e/0x76
[ 406.844907 ] RIP: 0033:0x7f0a2664e4fb |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Fix crash during module load unload test
During purex packet handling the driver was incorrectly freeing a
pre-allocated structure. Fix this by skipping that entry.
System crashed with the following stack during a module unload test.
Call Trace:
sbitmap_init_node+0x7f/0x1e0
sbitmap_queue_init_node+0x24/0x150
blk_mq_init_bitmaps+0x3d/0xa0
blk_mq_init_tags+0x68/0x90
blk_mq_alloc_map_and_rqs+0x44/0x120
blk_mq_alloc_set_map_and_rqs+0x63/0x150
blk_mq_alloc_tag_set+0x11b/0x230
scsi_add_host_with_dma.cold+0x3f/0x245
qla2x00_probe_one+0xd5a/0x1b80 [qla2xxx]
Call Trace with slub_debug and debug kernel:
kasan_report_invalid_free+0x50/0x80
__kasan_slab_free+0x137/0x150
slab_free_freelist_hook+0xc6/0x190
kfree+0xe8/0x2e0
qla2x00_free_device+0x3bb/0x5d0 [qla2xxx]
qla2x00_remove_one+0x668/0xcf0 [qla2xxx] |
| In the Linux kernel, the following vulnerability has been resolved:
lib/Kconfig.debug: TEST_IOV_ITER depends on MMU
Trying to run the iov_iter unit test on a nommu system such as the qemu
kc705-nommu emulation results in a crash.
KTAP version 1
# Subtest: iov_iter
# module: kunit_iov_iter
1..9
BUG: failure at mm/nommu.c:318/vmap()!
Kernel panic - not syncing: BUG!
The test calls vmap() directly, but vmap() is not supported on nommu
systems, causing the crash. TEST_IOV_ITER therefore needs to depend on
MMU. |
| In the Linux kernel, the following vulnerability has been resolved:
tools/nolibc/stdlib: fix memory error in realloc()
Pass user_p_len to memcpy() instead of heap->len to prevent realloc()
from copying an extra sizeof(heap) bytes from beyond the allocated
region. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix kernel crash during resume
Currently during resume, QMI target memory is not properly handled, resulting
in kernel crash in case DMA remap is not supported:
BUG: Bad page state in process kworker/u16:54 pfn:36e80
page: refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x36e80
page dumped because: nonzero _refcount
Call Trace:
bad_page
free_page_is_bad_report
__free_pages_ok
__free_pages
dma_direct_free
dma_free_attrs
ath12k_qmi_free_target_mem_chunk
ath12k_qmi_msg_mem_request_cb
The reason is:
Once ath12k module is loaded, firmware sends memory request to host. In case
DMA remap not supported, ath12k refuses the first request due to failure in
allocating with large segment size:
ath12k_pci 0000:04:00.0: qmi firmware request memory request
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 7077888
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 8454144
ath12k_pci 0000:04:00.0: qmi dma allocation failed (7077888 B type 1), will try later with small size
ath12k_pci 0000:04:00.0: qmi delays mem_request 2
ath12k_pci 0000:04:00.0: qmi firmware request memory request
Later firmware comes back with more but small segments and allocation
succeeds:
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 262144
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 65536
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
Now ath12k is working. If suspend is triggered, firmware will be reloaded
during resume. As same as before, firmware requests two large segments at
first. In ath12k_qmi_msg_mem_request_cb() segment count and size are
assigned:
ab->qmi.mem_seg_count == 2
ab->qmi.target_mem[0].size == 7077888
ab->qmi.target_mem[1].size == 8454144
Then allocation failed like before and ath12k_qmi_free_target_mem_chunk()
is called to free all allocated segments. Note the first segment is skipped
because its v.addr is cleared due to allocation failure:
chunk->v.addr = dma_alloc_coherent()
Also note that this leaks that segment because it has not been freed.
While freeing the second segment, a size of 8454144 is passed to
dma_free_coherent(). However remember that this segment is allocated at
the first time firmware is loaded, before suspend. So its real size is
524288, much smaller than 8454144. As a result kernel found we are freeing
some memory which is in use and thus cras
---truncated--- |
| Release of invalid pointer or reference in Microsoft Office Excel allows an unauthorized attacker to execute code locally. |
| A vulnerability in the Cisco Express Forwarding functionality of Cisco IOS XE Software for Cisco ASR 903 Aggregation Services Routers with Route Switch Processor 3 (RSP3C) could allow an unauthenticated, adjacent attacker to trigger a denial of service (DoS) condition.
This vulnerability is due to improper memory management when Cisco IOS XE Software is processing Address Resolution Protocol (ARP) messages. An attacker could exploit this vulnerability by sending crafted ARP messages at a high rate over a period of time to an affected device. A successful exploit could allow the attacker to exhaust system resources, which eventually triggers a reload of the active route switch processor (RSP). If a redundant RSP is not present, the router reloads. |
| A memory corruption vulnerability in HddPassword in Insyde InsydeH2O kernel 5.2 before 05.29.09, kernel 5.3 before 05.38.09, kernel 5.4 before 05.46.09, kernel 5.5 before 05.54.09, and kernel 5.6 before 05.61.09 could lead to escalating privileges in SMM. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: typec: tipd: Free IRQ only if it was requested before
In polling mode, if no IRQ was requested there is no need to free it.
Call devm_free_irq() only if client->irq is set. This fixes the warning
caused by the tps6598x module removal:
WARNING: CPU: 2 PID: 333 at kernel/irq/devres.c:144 devm_free_irq+0x80/0x8c
...
...
Call trace:
devm_free_irq+0x80/0x8c
tps6598x_remove+0x28/0x88 [tps6598x]
i2c_device_remove+0x2c/0x9c
device_remove+0x4c/0x80
device_release_driver_internal+0x1cc/0x228
driver_detach+0x50/0x98
bus_remove_driver+0x6c/0xbc
driver_unregister+0x30/0x60
i2c_del_driver+0x54/0x64
tps6598x_i2c_driver_exit+0x18/0xc3c [tps6598x]
__arm64_sys_delete_module+0x184/0x264
invoke_syscall+0x48/0x110
el0_svc_common.constprop.0+0xc8/0xe8
do_el0_svc+0x20/0x2c
el0_svc+0x28/0x98
el0t_64_sync_handler+0x13c/0x158
el0t_64_sync+0x190/0x194 |
| BerriAI/litellm is vulnerable to Server-Side Template Injection (SSTI) via the `/completions` endpoint. The vulnerability arises from the `hf_chat_template` method processing the `chat_template` parameter from the `tokenizer_config.json` file through the Jinja template engine without proper sanitization. Attackers can exploit this by crafting malicious `tokenizer_config.json` files that execute arbitrary code on the server. |
| One way hash with predictable salt vulnerabilities in ASPECT may expose sensitive information to a potential attackerThis issue affects ASPECT-Enterprise: through 3.*; NEXUS Series: through 3.*; MATRIX Series: through 3.*. |
| parisneo/lollms-webui, in its latest version, is vulnerable to remote code execution due to an insecure dependency on llama-cpp-python version llama_cpp_python-0.2.61+cpuavx2-cp311-cp311-manylinux_2_31_x86_64. The vulnerability arises from the application's 'binding_zoo' feature, which allows attackers to upload and interact with a malicious model file hosted on hugging-face, leading to remote code execution. The issue is linked to a known vulnerability in llama-cpp-python, CVE-2024-34359, which has not been patched in lollms-webui as of commit b454f40a. The vulnerability is exploitable through the application's handling of model files in the 'bindings_zoo' feature, specifically when processing gguf format model files. |