| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix kernel crash during resume
Currently during resume, QMI target memory is not properly handled, resulting
in kernel crash in case DMA remap is not supported:
BUG: Bad page state in process kworker/u16:54 pfn:36e80
page: refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x36e80
page dumped because: nonzero _refcount
Call Trace:
bad_page
free_page_is_bad_report
__free_pages_ok
__free_pages
dma_direct_free
dma_free_attrs
ath12k_qmi_free_target_mem_chunk
ath12k_qmi_msg_mem_request_cb
The reason is:
Once ath12k module is loaded, firmware sends memory request to host. In case
DMA remap not supported, ath12k refuses the first request due to failure in
allocating with large segment size:
ath12k_pci 0000:04:00.0: qmi firmware request memory request
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 7077888
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 8454144
ath12k_pci 0000:04:00.0: qmi dma allocation failed (7077888 B type 1), will try later with small size
ath12k_pci 0000:04:00.0: qmi delays mem_request 2
ath12k_pci 0000:04:00.0: qmi firmware request memory request
Later firmware comes back with more but small segments and allocation
succeeds:
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 262144
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 65536
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
Now ath12k is working. If suspend is triggered, firmware will be reloaded
during resume. As same as before, firmware requests two large segments at
first. In ath12k_qmi_msg_mem_request_cb() segment count and size are
assigned:
ab->qmi.mem_seg_count == 2
ab->qmi.target_mem[0].size == 7077888
ab->qmi.target_mem[1].size == 8454144
Then allocation failed like before and ath12k_qmi_free_target_mem_chunk()
is called to free all allocated segments. Note the first segment is skipped
because its v.addr is cleared due to allocation failure:
chunk->v.addr = dma_alloc_coherent()
Also note that this leaks that segment because it has not been freed.
While freeing the second segment, a size of 8454144 is passed to
dma_free_coherent(). However remember that this segment is allocated at
the first time firmware is loaded, before suspend. So its real size is
524288, much smaller than 8454144. As a result kernel found we are freeing
some memory which is in use and thus cras
---truncated--- |
| Release of invalid pointer or reference in Microsoft Office Excel allows an unauthorized attacker to execute code locally. |
| A memory corruption vulnerability in HddPassword in Insyde InsydeH2O kernel 5.2 before 05.29.09, kernel 5.3 before 05.38.09, kernel 5.4 before 05.46.09, kernel 5.5 before 05.54.09, and kernel 5.6 before 05.61.09 could lead to escalating privileges in SMM. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: typec: tipd: Free IRQ only if it was requested before
In polling mode, if no IRQ was requested there is no need to free it.
Call devm_free_irq() only if client->irq is set. This fixes the warning
caused by the tps6598x module removal:
WARNING: CPU: 2 PID: 333 at kernel/irq/devres.c:144 devm_free_irq+0x80/0x8c
...
...
Call trace:
devm_free_irq+0x80/0x8c
tps6598x_remove+0x28/0x88 [tps6598x]
i2c_device_remove+0x2c/0x9c
device_remove+0x4c/0x80
device_release_driver_internal+0x1cc/0x228
driver_detach+0x50/0x98
bus_remove_driver+0x6c/0xbc
driver_unregister+0x30/0x60
i2c_del_driver+0x54/0x64
tps6598x_i2c_driver_exit+0x18/0xc3c [tps6598x]
__arm64_sys_delete_module+0x184/0x264
invoke_syscall+0x48/0x110
el0_svc_common.constprop.0+0xc8/0xe8
do_el0_svc+0x20/0x2c
el0_svc+0x28/0x98
el0t_64_sync_handler+0x13c/0x158
el0t_64_sync+0x190/0x194 |
| An issue was discovered in Samsung Semiconductor Mobile Processor and Modem Exynos 9820, Exynos 9825, Exynos 980, Exynos 990, Exynos 850, Exynos 1080, Exynos 2100, Exynos 2200, Exynos 1280, Exynos 1380, Exynos 1330, Exynos 9110, Exynos W920, Exynos W930, Exynos Modem 5123, Exynos Modem 5300. The baseband software does not properly check a pointer specified by the SM (Session Management module), which can lead to Denial of Service (Untrusted Pointer Dereference). |
| Memory corruption while reading ACPI config through the user mode app. |
| V-SFT v6.2.5.0 and earlier contains an issue with free of pointer not at start of buffer in VS6EditData.dll!CWinFontInf::WinFontMsgCheck function. Opening specially crafted V7 or V8 files may lead to crash, information disclosure, and arbitrary code execution. |
| In the Linux kernel through 6.2.7, fs/ntfs3/inode.c has an invalid kfree because it does not validate MFT flags before replaying logs. |
| When a BIG-IP Advanced WAF/ASM security policy is configured on a virtual server, undisclosed requests can cause the bd process to terminate. |
| In the Linux kernel, the following vulnerability has been resolved:
bluetooth/hci: disallow setting handle bigger than HCI_CONN_HANDLE_MAX
Syzbot hit warning in hci_conn_del() caused by freeing handle that was
not allocated using ida allocator.
This is caused by handle bigger than HCI_CONN_HANDLE_MAX passed by
hci_le_big_sync_established_evt(), which makes code think it's unset
connection.
Add same check for handle upper bound as in hci_conn_set_handle() to
prevent warning. |
| In the Linux kernel, the following vulnerability has been resolved:
tee: optee: Fix incorrect page free bug
Pointer to the allocated pages (struct page *page) has already
progressed towards the end of allocation. It is incorrect to perform
__free_pages(page, order) using this pointer as we would free any
arbitrary pages. Fix this by stop modifying the page pointer. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: mpt3sas: Page fault in reply q processing
A page fault was encountered in mpt3sas on a LUN reset error path:
[ 145.763216] mpt3sas_cm1: Task abort tm failed: handle(0x0002),timeout(30) tr_method(0x0) smid(3) msix_index(0)
[ 145.778932] scsi 1:0:0:0: task abort: FAILED scmd(0x0000000024ba29a2)
[ 145.817307] scsi 1:0:0:0: attempting device reset! scmd(0x0000000024ba29a2)
[ 145.827253] scsi 1:0:0:0: [sg1] tag#2 CDB: Receive Diagnostic 1c 01 01 ff fc 00
[ 145.837617] scsi target1:0:0: handle(0x0002), sas_address(0x500605b0000272b9), phy(0)
[ 145.848598] scsi target1:0:0: enclosure logical id(0x500605b0000272b8), slot(0)
[ 149.858378] mpt3sas_cm1: Poll ReplyDescriptor queues for completion of smid(0), task_type(0x05), handle(0x0002)
[ 149.875202] BUG: unable to handle page fault for address: 00000007fffc445d
[ 149.885617] #PF: supervisor read access in kernel mode
[ 149.894346] #PF: error_code(0x0000) - not-present page
[ 149.903123] PGD 0 P4D 0
[ 149.909387] Oops: 0000 [#1] PREEMPT SMP NOPTI
[ 149.917417] CPU: 24 PID: 3512 Comm: scsi_eh_1 Kdump: loaded Tainted: G S O 5.10.89-altav-1 #1
[ 149.934327] Hardware name: DDN 200NVX2 /200NVX2-MB , BIOS ATHG2.2.02.01 09/10/2021
[ 149.951871] RIP: 0010:_base_process_reply_queue+0x4b/0x900 [mpt3sas]
[ 149.961889] Code: 0f 84 22 02 00 00 8d 48 01 49 89 fd 48 8d 57 38 f0 0f b1 4f 38 0f 85 d8 01 00 00 49 8b 45 10 45 31 e4 41 8b 55 0c 48 8d 1c d0 <0f> b6 03 83 e0 0f 3c 0f 0f 85 a2 00 00 00 e9 e6 01 00 00 0f b7 ee
[ 149.991952] RSP: 0018:ffffc9000f1ebcb8 EFLAGS: 00010246
[ 150.000937] RAX: 0000000000000055 RBX: 00000007fffc445d RCX: 000000002548f071
[ 150.011841] RDX: 00000000ffff8881 RSI: 0000000000000001 RDI: ffff888125ed50d8
[ 150.022670] RBP: 0000000000000000 R08: 0000000000000000 R09: c0000000ffff7fff
[ 150.033445] R10: ffffc9000f1ebb68 R11: ffffc9000f1ebb60 R12: 0000000000000000
[ 150.044204] R13: ffff888125ed50d8 R14: 0000000000000080 R15: 34cdc00034cdea80
[ 150.054963] FS: 0000000000000000(0000) GS:ffff88dfaf200000(0000) knlGS:0000000000000000
[ 150.066715] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 150.076078] CR2: 00000007fffc445d CR3: 000000012448a006 CR4: 0000000000770ee0
[ 150.086887] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 150.097670] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 150.108323] PKRU: 55555554
[ 150.114690] Call Trace:
[ 150.120497] ? printk+0x48/0x4a
[ 150.127049] mpt3sas_scsih_issue_tm.cold.114+0x2e/0x2b3 [mpt3sas]
[ 150.136453] mpt3sas_scsih_issue_locked_tm+0x86/0xb0 [mpt3sas]
[ 150.145759] scsih_dev_reset+0xea/0x300 [mpt3sas]
[ 150.153891] scsi_eh_ready_devs+0x541/0x9e0 [scsi_mod]
[ 150.162206] ? __scsi_host_match+0x20/0x20 [scsi_mod]
[ 150.170406] ? scsi_try_target_reset+0x90/0x90 [scsi_mod]
[ 150.178925] ? blk_mq_tagset_busy_iter+0x45/0x60
[ 150.186638] ? scsi_try_target_reset+0x90/0x90 [scsi_mod]
[ 150.195087] scsi_error_handler+0x3a5/0x4a0 [scsi_mod]
[ 150.203206] ? __schedule+0x1e9/0x610
[ 150.209783] ? scsi_eh_get_sense+0x210/0x210 [scsi_mod]
[ 150.217924] kthread+0x12e/0x150
[ 150.224041] ? kthread_worker_fn+0x130/0x130
[ 150.231206] ret_from_fork+0x1f/0x30
This is caused by mpt3sas_base_sync_reply_irqs() using an invalid reply_q
pointer outside of the list_for_each_entry() loop. At the end of the full
list traversal the pointer is invalid.
Move the _base_process_reply_queue() call inside of the loop. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/slub: actually fix freelist pointer vs redzoning
It turns out that SLUB redzoning ("slub_debug=Z") checks from
s->object_size rather than from s->inuse (which is normally bumped to
make room for the freelist pointer), so a cache created with an object
size less than 24 would have the freelist pointer written beyond
s->object_size, causing the redzone to be corrupted by the freelist
pointer. This was very visible with "slub_debug=ZF":
BUG test (Tainted: G B ): Right Redzone overwritten
-----------------------------------------------------------------------------
INFO: 0xffff957ead1c05de-0xffff957ead1c05df @offset=1502. First byte 0x1a instead of 0xbb
INFO: Slab 0xffffef3950b47000 objects=170 used=170 fp=0x0000000000000000 flags=0x8000000000000200
INFO: Object 0xffff957ead1c05d8 @offset=1496 fp=0xffff957ead1c0620
Redzone (____ptrval____): bb bb bb bb bb bb bb bb ........
Object (____ptrval____): 00 00 00 00 00 f6 f4 a5 ........
Redzone (____ptrval____): 40 1d e8 1a aa @....
Padding (____ptrval____): 00 00 00 00 00 00 00 00 ........
Adjust the offset to stay within s->object_size.
(Note that no caches of in this size range are known to exist in the
kernel currently.) |
| A elevation of privilege vulnerability in the Android media framework (mpeg4 encoder). Product: Android. Versions: 4.4.4, 5.0.2, 5.1.1, 6.0, 6.0.1, 7.0, 7.1.1, 7.1.2. Android ID: A-36075363. |
| lib/gssapi/spnego/spnego_mech.c in MIT Kerberos 5 (aka krb5) before 1.14 relies on an inappropriate context handle, which allows remote attackers to cause a denial of service (incorrect pointer read and process crash) via a crafted SPNEGO packet that is mishandled during a gss_inquire_context call. |
| An invalid memory address reference was discovered in the adjABS function in p_lx_elf.cpp in UPX 4.0.0 via a crafted Mach-O file. |
| An invalid memory address reference was discovered in the elf_lookup function in p_lx_elf.cpp in UPX 4.0.0 via a crafted Mach-O file. |
| Denial of service in MODEM due to improper pointer handling |
| Opera before 9.23 allows remote attackers to execute arbitrary code via crafted Javascript that triggers a "virtual function call on an invalid pointer." |
| GSS-NTLMSSP is a mechglue plugin for the GSSAPI library that implements NTLM authentication. Prior to version 1.2.0, an incorrect free when decoding target information can trigger a denial of service. The error condition incorrectly assumes the `cb` and `sh` buffers contain a copy of the data that needs to be freed. However, that is not the case. This vulnerability can be triggered via the main `gss_accept_sec_context` entry point. This will likely trigger an assertion failure in `free`, causing a denial-of-service. This issue is fixed in version 1.2.0. |