| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: dts: qcom: qcs615: fix a crash issue caused by infinite loop for Coresight
An infinite loop has been created by the Coresight devices. When only a
source device is enabled, the coresight_find_activated_sysfs_sink function
is recursively invoked in an attempt to locate an active sink device,
ultimately leading to a stack overflow and system crash. Therefore, disable
the replicator1 to break the infinite loop and prevent a potential stack
overflow.
replicator1_out -> funnel_swao_in6 -> tmc_etf_swao_in -> tmc_etf_swao_out
| |
replicator1_in replicator_swao_in
| |
replicator0_out1 replicator_swao_out0
| |
replicator0_in funnel_in1_in3
| |
tmc_etf_out <- tmc_etf_in <- funnel_merg_out <- funnel_merg_in1 <- funnel_in1_out
[call trace]
dump_backtrace+0x9c/0x128
show_stack+0x20/0x38
dump_stack_lvl+0x48/0x60
dump_stack+0x18/0x28
panic+0x340/0x3b0
nmi_panic+0x94/0xa0
panic_bad_stack+0x114/0x138
handle_bad_stack+0x34/0xb8
__bad_stack+0x78/0x80
coresight_find_activated_sysfs_sink+0x28/0xa0 [coresight]
coresight_find_activated_sysfs_sink+0x5c/0xa0 [coresight]
coresight_find_activated_sysfs_sink+0x5c/0xa0 [coresight]
coresight_find_activated_sysfs_sink+0x5c/0xa0 [coresight]
coresight_find_activated_sysfs_sink+0x5c/0xa0 [coresight]
...
coresight_find_activated_sysfs_sink+0x5c/0xa0 [coresight]
coresight_enable_sysfs+0x80/0x2a0 [coresight]
side effect after the change:
Only trace data originating from AOSS can reach the ETF_SWAO and EUD sinks. |
| Open WebUI is a self-hosted artificial intelligence platform designed to operate entirely offline. Versions 0.6.224 and prior contain a code injection vulnerability in the Direct Connections feature that allows malicious external model servers to execute arbitrary JavaScript in victim browsers via Server-Sent Event (SSE) execute events. This leads to authentication token theft, complete account takeover, and when chained with the Functions API, enables remote code execution on the backend server. The attack requires the victim to enable Direct Connections (disabled by default) and add the attacker's malicious model URL, achievable through social engineering of the admin and subsequent users. This issue is fixed in version 0.6.35. |
| Minder is an open source software supply chain security platform. In Minder Helm version 0.20241106.3386+ref.2507dbf and Minder Go versions from 0.0.72 to 0.0.83, Minder users may fetch content in the context of the Minder server, which may include URLs which the user would not normally have access to. This issue has been patched in Minder Helm version 0.20250203.3849+ref.fdc94f0 and Minder Go version 0.0.84. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix potential deadlock when releasing mids
All release_mid() callers seem to hold a reference of @mid so there is
no need to call kref_put(&mid->refcount, __release_mid) under
@server->mid_lock spinlock. If they don't, then an use-after-free bug
would have occurred anyways.
By getting rid of such spinlock also fixes a potential deadlock as
shown below
CPU 0 CPU 1
------------------------------------------------------------------
cifs_demultiplex_thread() cifs_debug_data_proc_show()
release_mid()
spin_lock(&server->mid_lock);
spin_lock(&cifs_tcp_ses_lock)
spin_lock(&server->mid_lock)
__release_mid()
smb2_find_smb_tcon()
spin_lock(&cifs_tcp_ses_lock) *deadlock* |
| In the Linux kernel, the following vulnerability has been resolved:
exfat: add cluster chain loop check for dir
An infinite loop may occur if the following conditions occur due to
file system corruption.
(1) Condition for exfat_count_dir_entries() to loop infinitely.
- The cluster chain includes a loop.
- There is no UNUSED entry in the cluster chain.
(2) Condition for exfat_create_upcase_table() to loop infinitely.
- The cluster chain of the root directory includes a loop.
- There are no UNUSED entry and up-case table entry in the cluster
chain of the root directory.
(3) Condition for exfat_load_bitmap() to loop infinitely.
- The cluster chain of the root directory includes a loop.
- There are no UNUSED entry and bitmap entry in the cluster chain
of the root directory.
(4) Condition for exfat_find_dir_entry() to loop infinitely.
- The cluster chain includes a loop.
- The unused directory entries were exhausted by some operation.
(5) Condition for exfat_check_dir_empty() to loop infinitely.
- The cluster chain includes a loop.
- The unused directory entries were exhausted by some operation.
- All files and sub-directories under the directory are deleted.
This commit adds checks to break the above infinite loop. |
| Vulnerability in LimeSurvey 6.13.0 in the endpoint /optout that causes infinite HTTP redirects when accessed directly. This behavior can be exploited to generate a Denegation of Service (DoS attack), by exhausting server or client resources. The system is unable to break the redirect loop, which can cause service degradation or browser instability. |
| Vulnerability in LimeSurvey 6.13.0 in the endpoint /optin that causes infinite HTTP redirects when accessed directly. This behavior can be exploited to generate a Denegation of Service (DoS attack), by exhausting server or client resources. The system is unable to break the redirect loop, which can cause service degradation or browser instability. |
| A vulnerability was found in Keycloak. This flaw allows attackers to bypass brute force protection by exploiting the timing of login attempts. By initiating multiple login requests simultaneously, attackers can exceed the configured limits for failed attempts before the system locks them out. This timing loophole enables attackers to make more guesses at passwords than intended, potentially compromising account security on affected systems. |
| A flaw was found in the USB Host Controller Driver framework in the Linux kernel. The usb_giveback_urb function has a logic loophole in its implementation. Due to the inappropriate judgment condition of the goto statement, the function cannot return under the input of a specific malformed descriptor file, so it falls into an endless loop, resulting in a denial of service. |
| A flaw exists within the Linux kernel's handling of new TCP connections. The issue results from the lack of memory release after its effective lifetime. This vulnerability allows an unauthenticated attacker to create a denial of service condition on the system. |
| A denial of service vulnerability was found in tipc_crypto_key_revoke in net/tipc/crypto.c in the Linux kernel’s TIPC subsystem. This flaw allows guests with local user privileges to trigger a deadlock and potentially crash the system. |
| A denial of service vulnerability due to a deadlock was found in sctp_auto_asconf_init in net/sctp/socket.c in the Linux kernel’s SCTP subsystem. This flaw allows guests with local user privileges to trigger a deadlock and potentially crash the system. |
| A flaw was found in Keylime. Due to their blocking nature, the Keylime registrar is subject to a remote denial of service against its SSL connections. This flaw allows an attacker to exhaust all available connections. |
| An infinite loop vulnerability was found in Samba's mdssvc RPC service for Spotlight. When parsing Spotlight mdssvc RPC packets sent by the client, the core unmarshalling function sl_unpack_loop() did not validate a field in the network packet that contains the count of elements in an array-like structure. By passing 0 as the count value, the attacked function will run in an endless loop consuming 100% CPU. This flaw allows an attacker to issue a malformed RPC request, triggering an infinite loop, resulting in a denial of service condition. |
| An issue has been discovered in GitLab CE/EE affecting all versions starting from 16.2 before 16.3.6, all versions starting from 16.4 before 16.4.2, all versions starting from 16.5 before 16.5.1. A low-privileged attacker can point a CI/CD Component to an incorrect path and cause the server to exhaust all available memory through an infinite loop and cause Denial of Service. |
| eProsima Fast-DDS v3.3 and before has an infinite loop vulnerability caused by integer overflow in the Time_t:: fraction() function. |
| In the Linux kernel, the following vulnerability has been resolved:
net: phy: Don't register LEDs for genphy
If a PHY has no driver, the genphy driver is probed/removed directly in
phy_attach/detach. If the PHY's ofnode has an "leds" subnode, then the
LEDs will be (un)registered when probing/removing the genphy driver.
This could occur if the leds are for a non-generic driver that isn't
loaded for whatever reason. Synchronously removing the PHY device in
phy_detach leads to the following deadlock:
rtnl_lock()
ndo_close()
...
phy_detach()
phy_remove()
phy_leds_unregister()
led_classdev_unregister()
led_trigger_set()
netdev_trigger_deactivate()
unregister_netdevice_notifier()
rtnl_lock()
There is a corresponding deadlock on the open/register side of things
(and that one is reported by lockdep), but it requires a race while this
one is deterministic.
Generic PHYs do not support LEDs anyway, so don't bother registering
them. |
| Memory corruptions can be remotely triggered in the Control-M/Agent when SSL/TLS communication is configured.
The issue occurs in the following cases:
* Control-M/Agent 9.0.20: SSL/TLS configuration is set to the non-default setting "use_openssl=n";
* Control-M/Agent 9.0.21 and 9.0.22: Agent router configuration uses the non-default settings "JAVA_AR=N" and "use_openssl=n" |
| In the Linux kernel, the following vulnerability has been resolved:
HID: pidff: Make sure to fetch pool before checking SIMULTANEOUS_MAX
As noted by Anssi some 20 years ago, pool report is sometimes messed up.
This worked fine on many devices but casued oops on VRS DirectForce PRO.
Here, we're making sure pool report is refetched before trying to access
any of it's fields. While loop was replaced with a for loop + exit
conditions were moved aroud to decrease the possibility of creating an
infinite loop scenario. |
| In the Linux kernel, the following vulnerability has been resolved:
accel/ivpu: Fix deadlock in ivpu_ms_cleanup()
Fix deadlock in ivpu_ms_cleanup() by preventing runtime resume after
file_priv->ms_lock is acquired.
During a failure in runtime resume, a cold boot is executed, which
calls ivpu_ms_cleanup_all(). This function calls ivpu_ms_cleanup()
that acquires file_priv->ms_lock and causes the deadlock. |