| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/pm: Prevent division by zero
The user can set any speed value.
If speed is greater than UINT_MAX/8, division by zero is possible.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/pm: Prevent division by zero
The user can set any speed value.
If speed is greater than UINT_MAX/8, division by zero is possible.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/pm/smu11: Prevent division by zero
The user can set any speed value.
If speed is greater than UINT_MAX/8, division by zero is possible.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
(cherry picked from commit da7dc714a8f8e1c9fc33c57cd63583779a3bef71) |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/pm: Prevent division by zero
The user can set any speed value.
If speed is greater than UINT_MAX/8, division by zero is possible.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/pm: Prevent division by zero
The user can set any speed value.
If speed is greater than UINT_MAX/8, division by zero is possible.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| The fix for XSA-423 added logic to Linux'es netback driver to deal with
a frontend splitting a packet in a way such that not all of the headers
would come in one piece. Unfortunately the logic introduced there
didn't account for the extreme case of the entire packet being split
into as many pieces as permitted by the protocol, yet still being
smaller than the area that's specially dealt with to keep all (possible)
headers together. Such an unusual packet would therefore trigger a
buffer overrun in the driver. |
| Bluetooth LE and BR/EDR secure pairing in Bluetooth Core Specification 2.1 through 5.2 may permit a nearby man-in-the-middle attacker to identify the Passkey used during pairing (in the Passkey authentication procedure) by reflection of the public key and the authentication evidence of the initiating device, potentially permitting this attacker to complete authenticated pairing with the responding device using the correct Passkey for the pairing session. The attack methodology determines the Passkey value one bit at a time. |
| In the Linux kernel, the following vulnerability has been resolved:
amdkfd: use calloc instead of kzalloc to avoid integer overflow
This uses calloc instead of doing the multiplication which might
overflow. |
| The implementation of PEAP in wpa_supplicant through 2.10 allows authentication bypass. For a successful attack, wpa_supplicant must be configured to not verify the network's TLS certificate during Phase 1 authentication, and an eap_peap_decrypt vulnerability can then be abused to skip Phase 2 authentication. The attack vector is sending an EAP-TLV Success packet instead of starting Phase 2. This allows an adversary to impersonate Enterprise Wi-Fi networks. |
| Transmit requests in Xen's virtual network protocol can consist of
multiple parts. While not really useful, except for the initial part
any of them may be of zero length, i.e. carry no data at all. Besides a
certain initial portion of the to be transferred data, these parts are
directly translated into what Linux calls SKB fragments. Such converted
request parts can, when for a particular SKB they are all of length
zero, lead to a de-reference of NULL in core networking code. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: btrtl: Prevent potential NULL dereference
The btrtl_initialize() function checks that rtl_load_file() either
had an error or it loaded a zero length file. However, if it loaded
a zero length file then the error code is not set correctly. It
results in an error pointer vs NULL bug, followed by a NULL pointer
dereference. This was detected by Smatch:
drivers/bluetooth/btrtl.c:592 btrtl_initialize() warn: passing zero to 'ERR_PTR' |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: ignore xattrs past end
Once inside 'ext4_xattr_inode_dec_ref_all' we should
ignore xattrs entries past the 'end' entry.
This fixes the following KASAN reported issue:
==================================================================
BUG: KASAN: slab-use-after-free in ext4_xattr_inode_dec_ref_all+0xb8c/0xe90
Read of size 4 at addr ffff888012c120c4 by task repro/2065
CPU: 1 UID: 0 PID: 2065 Comm: repro Not tainted 6.13.0-rc2+ #11
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x1fd/0x300
? tcp_gro_dev_warn+0x260/0x260
? _printk+0xc0/0x100
? read_lock_is_recursive+0x10/0x10
? irq_work_queue+0x72/0xf0
? __virt_addr_valid+0x17b/0x4b0
print_address_description+0x78/0x390
print_report+0x107/0x1f0
? __virt_addr_valid+0x17b/0x4b0
? __virt_addr_valid+0x3ff/0x4b0
? __phys_addr+0xb5/0x160
? ext4_xattr_inode_dec_ref_all+0xb8c/0xe90
kasan_report+0xcc/0x100
? ext4_xattr_inode_dec_ref_all+0xb8c/0xe90
ext4_xattr_inode_dec_ref_all+0xb8c/0xe90
? ext4_xattr_delete_inode+0xd30/0xd30
? __ext4_journal_ensure_credits+0x5f0/0x5f0
? __ext4_journal_ensure_credits+0x2b/0x5f0
? inode_update_timestamps+0x410/0x410
ext4_xattr_delete_inode+0xb64/0xd30
? ext4_truncate+0xb70/0xdc0
? ext4_expand_extra_isize_ea+0x1d20/0x1d20
? __ext4_mark_inode_dirty+0x670/0x670
? ext4_journal_check_start+0x16f/0x240
? ext4_inode_is_fast_symlink+0x2f2/0x3a0
ext4_evict_inode+0xc8c/0xff0
? ext4_inode_is_fast_symlink+0x3a0/0x3a0
? do_raw_spin_unlock+0x53/0x8a0
? ext4_inode_is_fast_symlink+0x3a0/0x3a0
evict+0x4ac/0x950
? proc_nr_inodes+0x310/0x310
? trace_ext4_drop_inode+0xa2/0x220
? _raw_spin_unlock+0x1a/0x30
? iput+0x4cb/0x7e0
do_unlinkat+0x495/0x7c0
? try_break_deleg+0x120/0x120
? 0xffffffff81000000
? __check_object_size+0x15a/0x210
? strncpy_from_user+0x13e/0x250
? getname_flags+0x1dc/0x530
__x64_sys_unlinkat+0xc8/0xf0
do_syscall_64+0x65/0x110
entry_SYSCALL_64_after_hwframe+0x67/0x6f
RIP: 0033:0x434ffd
Code: 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 8
RSP: 002b:00007ffc50fa7b28 EFLAGS: 00000246 ORIG_RAX: 0000000000000107
RAX: ffffffffffffffda RBX: 00007ffc50fa7e18 RCX: 0000000000434ffd
RDX: 0000000000000000 RSI: 0000000020000240 RDI: 0000000000000005
RBP: 00007ffc50fa7be0 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000001
R13: 00007ffc50fa7e08 R14: 00000000004bbf30 R15: 0000000000000001
</TASK>
The buggy address belongs to the object at ffff888012c12000
which belongs to the cache filp of size 360
The buggy address is located 196 bytes inside of
freed 360-byte region [ffff888012c12000, ffff888012c12168)
The buggy address belongs to the physical page:
page: refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x12c12
head: order:1 mapcount:0 entire_mapcount:0 nr_pages_mapped:0 pincount:0
flags: 0x40(head|node=0|zone=0)
page_type: f5(slab)
raw: 0000000000000040 ffff888000ad7640 ffffea0000497a00 dead000000000004
raw: 0000000000000000 0000000000100010 00000001f5000000 0000000000000000
head: 0000000000000040 ffff888000ad7640 ffffea0000497a00 dead000000000004
head: 0000000000000000 0000000000100010 00000001f5000000 0000000000000000
head: 0000000000000001 ffffea00004b0481 ffffffffffffffff 0000000000000000
head: 0000000000000002 0000000000000000 00000000ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff888012c11f80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ffff888012c12000: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
> ffff888012c12080: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff888012c12100: fb fb fb fb fb fb fb fb fb fb fb fb fb fc fc fc
ffff888012c12180: fc fc fc fc fc fc fc fc fc
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
serial/pmac_zilog: Remove flawed mitigation for rx irq flood
The mitigation was intended to stop the irq completely. That may be
better than a hard lock-up but it turns out that you get a crash anyway
if you're using pmac_zilog as a serial console:
ttyPZ0: pmz: rx irq flood !
BUG: spinlock recursion on CPU#0, swapper/0
That's because the pr_err() call in pmz_receive_chars() results in
pmz_console_write() attempting to lock a spinlock already locked in
pmz_interrupt(). With CONFIG_DEBUG_SPINLOCK=y, this produces a fatal
BUG splat. The spinlock in question is the one in struct uart_port.
Even when it's not fatal, the serial port rx function ceases to work.
Also, the iteration limit doesn't play nicely with QEMU, as can be
seen in the bug report linked below.
A web search for other reports of the error message "pmz: rx irq flood"
didn't produce anything. So I don't think this code is needed any more.
Remove it. |
| In the Linux kernel, the following vulnerability has been resolved:
nouveau: fix instmem race condition around ptr stores
Running a lot of VK CTS in parallel against nouveau, once every
few hours you might see something like this crash.
BUG: kernel NULL pointer dereference, address: 0000000000000008
PGD 8000000114e6e067 P4D 8000000114e6e067 PUD 109046067 PMD 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 7 PID: 53891 Comm: deqp-vk Not tainted 6.8.0-rc6+ #27
Hardware name: Gigabyte Technology Co., Ltd. Z390 I AORUS PRO WIFI/Z390 I AORUS PRO WIFI-CF, BIOS F8 11/05/2021
RIP: 0010:gp100_vmm_pgt_mem+0xe3/0x180 [nouveau]
Code: c7 48 01 c8 49 89 45 58 85 d2 0f 84 95 00 00 00 41 0f b7 46 12 49 8b 7e 08 89 da 42 8d 2c f8 48 8b 47 08 41 83 c7 01 48 89 ee <48> 8b 40 08 ff d0 0f 1f 00 49 8b 7e 08 48 89 d9 48 8d 75 04 48 c1
RSP: 0000:ffffac20c5857838 EFLAGS: 00010202
RAX: 0000000000000000 RBX: 00000000004d8001 RCX: 0000000000000001
RDX: 00000000004d8001 RSI: 00000000000006d8 RDI: ffffa07afe332180
RBP: 00000000000006d8 R08: ffffac20c5857ad0 R09: 0000000000ffff10
R10: 0000000000000001 R11: ffffa07af27e2de0 R12: 000000000000001c
R13: ffffac20c5857ad0 R14: ffffa07a96fe9040 R15: 000000000000001c
FS: 00007fe395eed7c0(0000) GS:ffffa07e2c980000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000008 CR3: 000000011febe001 CR4: 00000000003706f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
...
? gp100_vmm_pgt_mem+0xe3/0x180 [nouveau]
? gp100_vmm_pgt_mem+0x37/0x180 [nouveau]
nvkm_vmm_iter+0x351/0xa20 [nouveau]
? __pfx_nvkm_vmm_ref_ptes+0x10/0x10 [nouveau]
? __pfx_gp100_vmm_pgt_mem+0x10/0x10 [nouveau]
? __pfx_gp100_vmm_pgt_mem+0x10/0x10 [nouveau]
? __lock_acquire+0x3ed/0x2170
? __pfx_gp100_vmm_pgt_mem+0x10/0x10 [nouveau]
nvkm_vmm_ptes_get_map+0xc2/0x100 [nouveau]
? __pfx_nvkm_vmm_ref_ptes+0x10/0x10 [nouveau]
? __pfx_gp100_vmm_pgt_mem+0x10/0x10 [nouveau]
nvkm_vmm_map_locked+0x224/0x3a0 [nouveau]
Adding any sort of useful debug usually makes it go away, so I hand
wrote the function in a line, and debugged the asm.
Every so often pt->memory->ptrs is NULL. This ptrs ptr is set in
the nv50_instobj_acquire called from nvkm_kmap.
If Thread A and Thread B both get to nv50_instobj_acquire around
the same time, and Thread A hits the refcount_set line, and in
lockstep thread B succeeds at refcount_inc_not_zero, there is a
chance the ptrs value won't have been stored since refcount_set
is unordered. Force a memory barrier here, I picked smp_mb, since
we want it on all CPUs and it's write followed by a read.
v2: use paired smp_rmb/smp_wmb. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to avoid out-of-bounds access in f2fs_truncate_inode_blocks()
syzbot reports an UBSAN issue as below:
------------[ cut here ]------------
UBSAN: array-index-out-of-bounds in fs/f2fs/node.h:381:10
index 18446744073709550692 is out of range for type '__le32[5]' (aka 'unsigned int[5]')
CPU: 0 UID: 0 PID: 5318 Comm: syz.0.0 Not tainted 6.14.0-rc3-syzkaller-00060-g6537cfb395f3 #0
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
ubsan_epilogue lib/ubsan.c:231 [inline]
__ubsan_handle_out_of_bounds+0x121/0x150 lib/ubsan.c:429
get_nid fs/f2fs/node.h:381 [inline]
f2fs_truncate_inode_blocks+0xa5e/0xf60 fs/f2fs/node.c:1181
f2fs_do_truncate_blocks+0x782/0x1030 fs/f2fs/file.c:808
f2fs_truncate_blocks+0x10d/0x300 fs/f2fs/file.c:836
f2fs_truncate+0x417/0x720 fs/f2fs/file.c:886
f2fs_file_write_iter+0x1bdb/0x2550 fs/f2fs/file.c:5093
aio_write+0x56b/0x7c0 fs/aio.c:1633
io_submit_one+0x8a7/0x18a0 fs/aio.c:2052
__do_sys_io_submit fs/aio.c:2111 [inline]
__se_sys_io_submit+0x171/0x2e0 fs/aio.c:2081
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f238798cde9
index 18446744073709550692 (decimal, unsigned long long)
= 0xfffffffffffffc64 (hexadecimal, unsigned long long)
= -924 (decimal, long long)
In f2fs_truncate_inode_blocks(), UBSAN detects that get_nid() tries to
access .i_nid[-924], it means both offset[0] and level should zero.
The possible case should be in f2fs_do_truncate_blocks(), we try to
truncate inode size to zero, however, dn.ofs_in_node is zero and
dn.node_page is not an inode page, so it fails to truncate inode page,
and then pass zeroed free_from to f2fs_truncate_inode_blocks(), result
in this issue.
if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
f2fs_truncate_data_blocks_range(&dn, count);
free_from += count;
}
I guess the reason why dn.node_page is not an inode page could be: there
are multiple nat entries share the same node block address, once the node
block address was reused, f2fs_get_node_page() may load a non-inode block.
Let's add a sanity check for such condition to avoid out-of-bounds access
issue. |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix OOB in nilfs_set_de_type
The size of the nilfs_type_by_mode array in the fs/nilfs2/dir.c file is
defined as "S_IFMT >> S_SHIFT", but the nilfs_set_de_type() function,
which uses this array, specifies the index to read from the array in the
same way as "(mode & S_IFMT) >> S_SHIFT".
static void nilfs_set_de_type(struct nilfs_dir_entry *de, struct inode
*inode)
{
umode_t mode = inode->i_mode;
de->file_type = nilfs_type_by_mode[(mode & S_IFMT)>>S_SHIFT]; // oob
}
However, when the index is determined this way, an out-of-bounds (OOB)
error occurs by referring to an index that is 1 larger than the array size
when the condition "mode & S_IFMT == S_IFMT" is satisfied. Therefore, a
patch to resize the nilfs_type_by_mode array should be applied to prevent
OOB errors. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_set_pipapo: do not free live element
Pablo reports a crash with large batches of elements with a
back-to-back add/remove pattern. Quoting Pablo:
add_elem("00000000") timeout 100 ms
...
add_elem("0000000X") timeout 100 ms
del_elem("0000000X") <---------------- delete one that was just added
...
add_elem("00005000") timeout 100 ms
1) nft_pipapo_remove() removes element 0000000X
Then, KASAN shows a splat.
Looking at the remove function there is a chance that we will drop a
rule that maps to a non-deactivated element.
Removal happens in two steps, first we do a lookup for key k and return the
to-be-removed element and mark it as inactive in the next generation.
Then, in a second step, the element gets removed from the set/map.
The _remove function does not work correctly if we have more than one
element that share the same key.
This can happen if we insert an element into a set when the set already
holds an element with same key, but the element mapping to the existing
key has timed out or is not active in the next generation.
In such case its possible that removal will unmap the wrong element.
If this happens, we will leak the non-deactivated element, it becomes
unreachable.
The element that got deactivated (and will be freed later) will
remain reachable in the set data structure, this can result in
a crash when such an element is retrieved during lookup (stale
pointer).
Add a check that the fully matching key does in fact map to the element
that we have marked as inactive in the deactivation step.
If not, we need to continue searching.
Add a bug/warn trap at the end of the function as well, the remove
function must not ever be called with an invisible/unreachable/non-existent
element.
v2: avoid uneeded temporary variable (Stefano) |
| sapi/cgi/cgi_main.c in PHP before 5.3.12 and 5.4.x before 5.4.2, when configured as a CGI script (aka php-cgi), does not properly handle query strings that lack an = (equals sign) character, which allows remote attackers to execute arbitrary code by placing command-line options in the query string, related to lack of skipping a certain php_getopt for the 'd' case. |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: add sanity check for agwidth in dbMount
The width in dmapctl of the AG is zero, it trigger a divide error when
calculating the control page level in dbAllocAG.
To avoid this issue, add a check for agwidth in dbAllocAG. |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: Prevent copying of nlink with value 0 from disk inode
syzbot report a deadlock in diFree. [1]
When calling "ioctl$LOOP_SET_STATUS64", the offset value passed in is 4,
which does not match the mounted loop device, causing the mapping of the
mounted loop device to be invalidated.
When creating the directory and creating the inode of iag in diReadSpecial(),
read the page of fixed disk inode (AIT) in raw mode in read_metapage(), the
metapage data it returns is corrupted, which causes the nlink value of 0 to be
assigned to the iag inode when executing copy_from_dinode(), which ultimately
causes a deadlock when entering diFree().
To avoid this, first check the nlink value of dinode before setting iag inode.
[1]
WARNING: possible recursive locking detected
6.12.0-rc7-syzkaller-00212-g4a5df3796467 #0 Not tainted
--------------------------------------------
syz-executor301/5309 is trying to acquire lock:
ffff888044548920 (&(imap->im_aglock[index])){+.+.}-{3:3}, at: diFree+0x37c/0x2fb0 fs/jfs/jfs_imap.c:889
but task is already holding lock:
ffff888044548920 (&(imap->im_aglock[index])){+.+.}-{3:3}, at: diAlloc+0x1b6/0x1630
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&(imap->im_aglock[index]));
lock(&(imap->im_aglock[index]));
*** DEADLOCK ***
May be due to missing lock nesting notation
5 locks held by syz-executor301/5309:
#0: ffff8880422a4420 (sb_writers#9){.+.+}-{0:0}, at: mnt_want_write+0x3f/0x90 fs/namespace.c:515
#1: ffff88804755b390 (&type->i_mutex_dir_key#6/1){+.+.}-{3:3}, at: inode_lock_nested include/linux/fs.h:850 [inline]
#1: ffff88804755b390 (&type->i_mutex_dir_key#6/1){+.+.}-{3:3}, at: filename_create+0x260/0x540 fs/namei.c:4026
#2: ffff888044548920 (&(imap->im_aglock[index])){+.+.}-{3:3}, at: diAlloc+0x1b6/0x1630
#3: ffff888044548890 (&imap->im_freelock){+.+.}-{3:3}, at: diNewIAG fs/jfs/jfs_imap.c:2460 [inline]
#3: ffff888044548890 (&imap->im_freelock){+.+.}-{3:3}, at: diAllocExt fs/jfs/jfs_imap.c:1905 [inline]
#3: ffff888044548890 (&imap->im_freelock){+.+.}-{3:3}, at: diAllocAG+0x4b7/0x1e50 fs/jfs/jfs_imap.c:1669
#4: ffff88804755a618 (&jfs_ip->rdwrlock/1){++++}-{3:3}, at: diNewIAG fs/jfs/jfs_imap.c:2477 [inline]
#4: ffff88804755a618 (&jfs_ip->rdwrlock/1){++++}-{3:3}, at: diAllocExt fs/jfs/jfs_imap.c:1905 [inline]
#4: ffff88804755a618 (&jfs_ip->rdwrlock/1){++++}-{3:3}, at: diAllocAG+0x869/0x1e50 fs/jfs/jfs_imap.c:1669
stack backtrace:
CPU: 0 UID: 0 PID: 5309 Comm: syz-executor301 Not tainted 6.12.0-rc7-syzkaller-00212-g4a5df3796467 #0
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_deadlock_bug+0x483/0x620 kernel/locking/lockdep.c:3037
check_deadlock kernel/locking/lockdep.c:3089 [inline]
validate_chain+0x15e2/0x5920 kernel/locking/lockdep.c:3891
__lock_acquire+0x1384/0x2050 kernel/locking/lockdep.c:5202
lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5825
__mutex_lock_common kernel/locking/mutex.c:608 [inline]
__mutex_lock+0x136/0xd70 kernel/locking/mutex.c:752
diFree+0x37c/0x2fb0 fs/jfs/jfs_imap.c:889
jfs_evict_inode+0x32d/0x440 fs/jfs/inode.c:156
evict+0x4e8/0x9b0 fs/inode.c:725
diFreeSpecial fs/jfs/jfs_imap.c:552 [inline]
duplicateIXtree+0x3c6/0x550 fs/jfs/jfs_imap.c:3022
diNewIAG fs/jfs/jfs_imap.c:2597 [inline]
diAllocExt fs/jfs/jfs_imap.c:1905 [inline]
diAllocAG+0x17dc/0x1e50 fs/jfs/jfs_imap.c:1669
diAlloc+0x1d2/0x1630 fs/jfs/jfs_imap.c:1590
ialloc+0x8f/0x900 fs/jfs/jfs_inode.c:56
jfs_mkdir+0x1c5/0xba0 fs/jfs/namei.c:225
vfs_mkdir+0x2f9/0x4f0 fs/namei.c:4257
do_mkdirat+0x264/0x3a0 fs/namei.c:4280
__do_sys_mkdirat fs/namei.c:4295 [inline]
__se_sys_mkdirat fs/namei.c:4293 [inline]
__x64_sys_mkdirat+0x87/0xa0 fs/namei.c:4293
do_syscall_x64 arch/x86/en
---truncated--- |