Search

Search Results (333418 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2026-23150 1 Linux 1 Linux Kernel 2026-02-18 N/A
In the Linux kernel, the following vulnerability has been resolved: nfc: llcp: Fix memleak in nfc_llcp_send_ui_frame(). syzbot reported various memory leaks related to NFC, struct nfc_llcp_sock, sk_buff, nfc_dev, etc. [0] The leading log hinted that nfc_llcp_send_ui_frame() failed to allocate skb due to sock_error(sk) being -ENXIO. ENXIO is set by nfc_llcp_socket_release() when struct nfc_llcp_local is destroyed by local_cleanup(). The problem is that there is no synchronisation between nfc_llcp_send_ui_frame() and local_cleanup(), and skb could be put into local->tx_queue after it was purged in local_cleanup(): CPU1 CPU2 ---- ---- nfc_llcp_send_ui_frame() local_cleanup() |- do { ' |- pdu = nfc_alloc_send_skb(..., &err) | . | |- nfc_llcp_socket_release(local, false, ENXIO); | |- skb_queue_purge(&local->tx_queue); | | ' | |- skb_queue_tail(&local->tx_queue, pdu); | ... | |- pdu = nfc_alloc_send_skb(..., &err) | ^._________________________________.' local_cleanup() is called for struct nfc_llcp_local only after nfc_llcp_remove_local() unlinks it from llcp_devices. If we hold local->tx_queue.lock then, we can synchronise the thread and nfc_llcp_send_ui_frame(). Let's do that and check list_empty(&local->list) before queuing skb to local->tx_queue in nfc_llcp_send_ui_frame(). [0]: [ 56.074943][ T6096] llcp: nfc_llcp_send_ui_frame: Could not allocate PDU (error=-6) [ 64.318868][ T5813] kmemleak: 6 new suspected memory leaks (see /sys/kernel/debug/kmemleak) BUG: memory leak unreferenced object 0xffff8881272f6800 (size 1024): comm "syz.0.17", pid 6096, jiffies 4294942766 hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 27 00 03 40 00 00 00 00 00 00 00 00 00 00 00 00 '..@............ backtrace (crc da58d84d): kmemleak_alloc_recursive include/linux/kmemleak.h:44 [inline] slab_post_alloc_hook mm/slub.c:4979 [inline] slab_alloc_node mm/slub.c:5284 [inline] __do_kmalloc_node mm/slub.c:5645 [inline] __kmalloc_noprof+0x3e3/0x6b0 mm/slub.c:5658 kmalloc_noprof include/linux/slab.h:961 [inline] sk_prot_alloc+0x11a/0x1b0 net/core/sock.c:2239 sk_alloc+0x36/0x360 net/core/sock.c:2295 nfc_llcp_sock_alloc+0x37/0x130 net/nfc/llcp_sock.c:979 llcp_sock_create+0x71/0xd0 net/nfc/llcp_sock.c:1044 nfc_sock_create+0xc9/0xf0 net/nfc/af_nfc.c:31 __sock_create+0x1a9/0x340 net/socket.c:1605 sock_create net/socket.c:1663 [inline] __sys_socket_create net/socket.c:1700 [inline] __sys_socket+0xb9/0x1a0 net/socket.c:1747 __do_sys_socket net/socket.c:1761 [inline] __se_sys_socket net/socket.c:1759 [inline] __x64_sys_socket+0x1b/0x30 net/socket.c:1759 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xa4/0xfa0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f BUG: memory leak unreferenced object 0xffff88810fbd9800 (size 240): comm "syz.0.17", pid 6096, jiffies 4294942850 hex dump (first 32 bytes): 68 f0 ff 08 81 88 ff ff 68 f0 ff 08 81 88 ff ff h.......h....... 00 00 00 00 00 00 00 00 00 68 2f 27 81 88 ff ff .........h/'.... backtrace (crc 6cc652b1): kmemleak_alloc_recursive include/linux/kmemleak.h:44 [inline] slab_post_alloc_hook mm/slub.c:4979 [inline] slab_alloc_node mm/slub.c:5284 [inline] kmem_cache_alloc_node_noprof+0x36f/0x5e0 mm/slub.c:5336 __alloc_skb+0x203/0x240 net/core/skbuff.c:660 alloc_skb include/linux/skbuff.h:1383 [inline] alloc_skb_with_frags+0x69/0x3f0 net/core/sk ---truncated---
CVE-2026-23157 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: btrfs: do not strictly require dirty metadata threshold for metadata writepages [BUG] There is an internal report that over 1000 processes are waiting at the io_schedule_timeout() of balance_dirty_pages(), causing a system hang and trigger a kernel coredump. The kernel is v6.4 kernel based, but the root problem still applies to any upstream kernel before v6.18. [CAUSE] From Jan Kara for his wisdom on the dirty page balance behavior first. This cgroup dirty limit was what was actually playing the role here because the cgroup had only a small amount of memory and so the dirty limit for it was something like 16MB. Dirty throttling is responsible for enforcing that nobody can dirty (significantly) more dirty memory than there's dirty limit. Thus when a task is dirtying pages it periodically enters into balance_dirty_pages() and we let it sleep there to slow down the dirtying. When the system is over dirty limit already (either globally or within a cgroup of the running task), we will not let the task exit from balance_dirty_pages() until the number of dirty pages drops below the limit. So in this particular case, as I already mentioned, there was a cgroup with relatively small amount of memory and as a result with dirty limit set at 16MB. A task from that cgroup has dirtied about 28MB worth of pages in btrfs btree inode and these were practically the only dirty pages in that cgroup. So that means the only way to reduce the dirty pages of that cgroup is to writeback the dirty pages of btrfs btree inode, and only after that those processes can exit balance_dirty_pages(). Now back to the btrfs part, btree_writepages() is responsible for writing back dirty btree inode pages. The problem here is, there is a btrfs internal threshold that if the btree inode's dirty bytes are below the 32M threshold, it will not do any writeback. This behavior is to batch as much metadata as possible so we won't write back those tree blocks and then later re-COW them again for another modification. This internal 32MiB is higher than the existing dirty page size (28MiB), meaning no writeback will happen, causing a deadlock between btrfs and cgroup: - Btrfs doesn't want to write back btree inode until more dirty pages - Cgroup/MM doesn't want more dirty pages for btrfs btree inode Thus any process touching that btree inode is put into sleep until the number of dirty pages is reduced. Thanks Jan Kara a lot for the analysis of the root cause. [ENHANCEMENT] Since kernel commit b55102826d7d ("btrfs: set AS_KERNEL_FILE on the btree_inode"), btrfs btree inode pages will only be charged to the root cgroup which should have a much larger limit than btrfs' 32MiB threshold. So it should not affect newer kernels. But for all current LTS kernels, they are all affected by this problem, and backporting the whole AS_KERNEL_FILE may not be a good idea. Even for newer kernels I still think it's a good idea to get rid of the internal threshold at btree_writepages(), since for most cases cgroup/MM has a better view of full system memory usage than btrfs' fixed threshold. For internal callers using btrfs_btree_balance_dirty() since that function is already doing internal threshold check, we don't need to bother them. But for external callers of btree_writepages(), just respect their requests and write back whatever they want, ignoring the internal btrfs threshold to avoid such deadlock on btree inode dirty page balancing.
CVE-2026-23170 1 Linux 1 Linux Kernel 2026-02-18 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/imx/tve: fix probe device leak Make sure to drop the reference taken to the DDC device during probe on probe failure (e.g. probe deferral) and on driver unbind.
CVE-2026-23171 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: bonding: fix use-after-free due to enslave fail after slave array update Fix a use-after-free which happens due to enslave failure after the new slave has been added to the array. Since the new slave can be used for Tx immediately, we can use it after it has been freed by the enslave error cleanup path which frees the allocated slave memory. Slave update array is supposed to be called last when further enslave failures are not expected. Move it after xdp setup to avoid any problems. It is very easy to reproduce the problem with a simple xdp_pass prog: ip l add bond1 type bond mode balance-xor ip l set bond1 up ip l set dev bond1 xdp object xdp_pass.o sec xdp_pass ip l add dumdum type dummy Then run in parallel: while :; do ip l set dumdum master bond1 1>/dev/null 2>&1; done; mausezahn bond1 -a own -b rand -A rand -B 1.1.1.1 -c 0 -t tcp "dp=1-1023, flags=syn" The crash happens almost immediately: [ 605.602850] Oops: general protection fault, probably for non-canonical address 0xe0e6fc2460000137: 0000 [#1] SMP KASAN NOPTI [ 605.602916] KASAN: maybe wild-memory-access in range [0x07380123000009b8-0x07380123000009bf] [ 605.602946] CPU: 0 UID: 0 PID: 2445 Comm: mausezahn Kdump: loaded Tainted: G B 6.19.0-rc6+ #21 PREEMPT(voluntary) [ 605.602979] Tainted: [B]=BAD_PAGE [ 605.602998] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [ 605.603032] RIP: 0010:netdev_core_pick_tx+0xcd/0x210 [ 605.603063] Code: 48 89 fa 48 c1 ea 03 80 3c 02 00 0f 85 3e 01 00 00 48 b8 00 00 00 00 00 fc ff df 4c 8b 6b 08 49 8d 7d 30 48 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 25 01 00 00 49 8b 45 30 4c 89 e2 48 89 ee 48 89 [ 605.603111] RSP: 0018:ffff88817b9af348 EFLAGS: 00010213 [ 605.603145] RAX: dffffc0000000000 RBX: ffff88817d28b420 RCX: 0000000000000000 [ 605.603172] RDX: 00e7002460000137 RSI: 0000000000000008 RDI: 07380123000009be [ 605.603199] RBP: ffff88817b541a00 R08: 0000000000000001 R09: fffffbfff3ed8c0c [ 605.603226] R10: ffffffff9f6c6067 R11: 0000000000000001 R12: 0000000000000000 [ 605.603253] R13: 073801230000098e R14: ffff88817d28b448 R15: ffff88817b541a84 [ 605.603286] FS: 00007f6570ef67c0(0000) GS:ffff888221dfa000(0000) knlGS:0000000000000000 [ 605.603319] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 605.603343] CR2: 00007f65712fae40 CR3: 000000011371b000 CR4: 0000000000350ef0 [ 605.603373] Call Trace: [ 605.603392] <TASK> [ 605.603410] __dev_queue_xmit+0x448/0x32a0 [ 605.603434] ? __pfx_vprintk_emit+0x10/0x10 [ 605.603461] ? __pfx_vprintk_emit+0x10/0x10 [ 605.603484] ? __pfx___dev_queue_xmit+0x10/0x10 [ 605.603507] ? bond_start_xmit+0xbfb/0xc20 [bonding] [ 605.603546] ? _printk+0xcb/0x100 [ 605.603566] ? __pfx__printk+0x10/0x10 [ 605.603589] ? bond_start_xmit+0xbfb/0xc20 [bonding] [ 605.603627] ? add_taint+0x5e/0x70 [ 605.603648] ? add_taint+0x2a/0x70 [ 605.603670] ? end_report.cold+0x51/0x75 [ 605.603693] ? bond_start_xmit+0xbfb/0xc20 [bonding] [ 605.603731] bond_start_xmit+0x623/0xc20 [bonding]
CVE-2026-23151 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: MGMT: Fix memory leak in set_ssp_complete Fix memory leak in set_ssp_complete() where mgmt_pending_cmd structures are not freed after being removed from the pending list. Commit 302a1f674c00 ("Bluetooth: MGMT: Fix possible UAFs") replaced mgmt_pending_foreach() calls with individual command handling but missed adding mgmt_pending_free() calls in both error and success paths of set_ssp_complete(). Other completion functions like set_le_complete() were fixed correctly in the same commit. This causes a memory leak of the mgmt_pending_cmd structure and its associated parameter data for each SSP command that completes. Add the missing mgmt_pending_free(cmd) calls in both code paths to fix the memory leak. Also fix the same issue in set_advertising_complete().
CVE-2026-23165 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: sfc: fix deadlock in RSS config read Since cited commit, core locks the net_device's rss_lock when handling ethtool -x command, so driver's implementation should not lock it again. Remove the latter.
CVE-2025-13973 2 Kasuga16, Wordpress 2 Stickeasy Protected Contact Form, Wordpress 2026-02-18 5.3 Medium
The StickEasy Protected Contact Form plugin for WordPress is vulnerable to Sensitive Information Disclosure in all versions up to, and including, 1.0.2. The plugin stores spam detection logs at a predictable publicly accessible location (wp-content/uploads/stickeasy-protected-contact-form/spcf-log.txt). This makes it possible for unauthenticated attackers to download the log file and access sensitive information including visitor IP addresses, email addresses, and comment snippets from contact form submissions that were flagged as spam.
CVE-2025-14852 2 Antevenio, Wordpress 2 Mdirector Newsletter, Wordpress 2026-02-18 4.3 Medium
The MDirector Newsletter plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 4.5.8. This is due to missing nonce verification on the mdirectorNewsletterSave function. This makes it possible for unauthenticated attackers to update the plugin's settings via a forged request granted they can trick a site administrator into performing an action such as clicking on a link.
CVE-2025-15483 2 Ajferg, Wordpress 2 Link Hopper, Wordpress 2026-02-18 4.4 Medium
The Link Hopper plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the ‘hop_name’ parameter in all versions up to, and including, 2.5 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with administrator-level access, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. This only affects multi-site installations and installations where unfiltered_html has been disabled.
CVE-2025-69633 1 Prestashop 1 Advanced Popup Creator 2026-02-18 9.8 Critical
A SQL Injection vulnerability in the Advanced Popup Creator (advancedpopupcreator) module for PrestaShop 1.1.26 through 1.2.6 (Fixed in version 1.2.7) allows remote unauthenticated attackers to execute arbitrary SQL queries via the fromController parameter in the popup controller. The parameter is passed unsanitized to SQL queries in classes/AdvancedPopup.php (getPopups() and updateVisits() functions).
CVE-2025-70866 1 Lavalite 1 Cms 2026-02-18 8.8 High
LavaLite CMS 10.1.0 is vulnerable to Incorrect Access Control. An authenticated user with low-level privileges (User role) can directly access the admin backend by logging in through /admin/login. The vulnerability exists because the admin and user authentication guards share the same user provider without role-based access control verification.
CVE-2025-70954 1 Ton-blockchain 1 Ton 2026-02-18 7.5 High
A Null Pointer Dereference vulnerability exists in the TON Virtual Machine (TVM) within the TON Blockchain before v2025.06. The issue is located in the execution logic of the INMSGPARAM instruction, where the program fails to validate if a specific pointer is null before accessing it. By sending a malicious transaction or smart contract, an attacker can trigger this null pointer dereference, causing the validator node process to crash (segmentation fault). This results in a Denial of Service (DoS) affecting the availability of the entire blockchain network.
CVE-2025-70955 1 Ton-blockchain 1 Ton 2026-02-18 7.5 High
A Stack Overflow vulnerability was discovered in the TON Virtual Machine (TVM) before v2024.10. The vulnerability stems from the improper handling of vmstate and continuation jump instructions, which allow for continuous dynamic tail calls. An attacker can exploit this by crafting a smart contract with deeply nested jump logic. Even within permissible gas limits, this nested execution exhausts the host process's stack space, causing the validator node to crash. This results in a Denial of Service (DoS) for the TON blockchain network.
CVE-2026-23119 1 Linux 1 Linux Kernel 2026-02-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bonding: provide a net pointer to __skb_flow_dissect() After 3cbf4ffba5ee ("net: plumb network namespace into __skb_flow_dissect") we have to provide a net pointer to __skb_flow_dissect(), either via skb->dev, skb->sk, or a user provided pointer. In the following case, syzbot was able to cook a bare skb. WARNING: net/core/flow_dissector.c:1131 at __skb_flow_dissect+0xb57/0x68b0 net/core/flow_dissector.c:1131, CPU#1: syz.2.1418/11053 Call Trace: <TASK> bond_flow_dissect drivers/net/bonding/bond_main.c:4093 [inline] __bond_xmit_hash+0x2d7/0xba0 drivers/net/bonding/bond_main.c:4157 bond_xmit_hash_xdp drivers/net/bonding/bond_main.c:4208 [inline] bond_xdp_xmit_3ad_xor_slave_get drivers/net/bonding/bond_main.c:5139 [inline] bond_xdp_get_xmit_slave+0x1fd/0x710 drivers/net/bonding/bond_main.c:5515 xdp_master_redirect+0x13f/0x2c0 net/core/filter.c:4388 bpf_prog_run_xdp include/net/xdp.h:700 [inline] bpf_test_run+0x6b2/0x7d0 net/bpf/test_run.c:421 bpf_prog_test_run_xdp+0x795/0x10e0 net/bpf/test_run.c:1390 bpf_prog_test_run+0x2c7/0x340 kernel/bpf/syscall.c:4703 __sys_bpf+0x562/0x860 kernel/bpf/syscall.c:6182 __do_sys_bpf kernel/bpf/syscall.c:6274 [inline] __se_sys_bpf kernel/bpf/syscall.c:6272 [inline] __x64_sys_bpf+0x7c/0x90 kernel/bpf/syscall.c:6272 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xec/0xf80 arch/x86/entry/syscall_64.c:94
CVE-2026-23121 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mISDN: annotate data-race around dev->work dev->work can re read locklessly in mISDN_read() and mISDN_poll(). Add READ_ONCE()/WRITE_ONCE() annotations. BUG: KCSAN: data-race in mISDN_ioctl / mISDN_read write to 0xffff88812d848280 of 4 bytes by task 10864 on cpu 1: misdn_add_timer drivers/isdn/mISDN/timerdev.c:175 [inline] mISDN_ioctl+0x2fb/0x550 drivers/isdn/mISDN/timerdev.c:233 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:597 [inline] __se_sys_ioctl+0xce/0x140 fs/ioctl.c:583 __x64_sys_ioctl+0x43/0x50 fs/ioctl.c:583 x64_sys_call+0x14b0/0x3000 arch/x86/include/generated/asm/syscalls_64.h:17 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xd8/0x2c0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f read to 0xffff88812d848280 of 4 bytes by task 10857 on cpu 0: mISDN_read+0x1f2/0x470 drivers/isdn/mISDN/timerdev.c:112 do_loop_readv_writev fs/read_write.c:847 [inline] vfs_readv+0x3fb/0x690 fs/read_write.c:1020 do_readv+0xe7/0x210 fs/read_write.c:1080 __do_sys_readv fs/read_write.c:1165 [inline] __se_sys_readv fs/read_write.c:1162 [inline] __x64_sys_readv+0x45/0x50 fs/read_write.c:1162 x64_sys_call+0x2831/0x3000 arch/x86/include/generated/asm/syscalls_64.h:20 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xd8/0x2c0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f value changed: 0x00000000 -> 0x00000001
CVE-2026-23122 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: igc: Reduce TSN TX packet buffer from 7KB to 5KB per queue The previous 7 KB per queue caused TX unit hangs under heavy timestamping load. Reducing to 5 KB avoids these hangs and matches the TSN recommendation in I225/I226 SW User Manual Section 7.5.4. The 8 KB "freed" by this change is currently unused. This reduction is not expected to impact throughput, as the i226 is PCIe-limited for small TSN packets rather than TX-buffer-limited.
CVE-2026-23128 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: arm64: Set __nocfi on swsusp_arch_resume() A DABT is reported[1] on an android based system when resume from hiberate. This happens because swsusp_arch_suspend_exit() is marked with SYM_CODE_*() and does not have a CFI hash, but swsusp_arch_resume() will attempt to verify the CFI hash when calling a copy of swsusp_arch_suspend_exit(). Given that there's an existing requirement that the entrypoint to swsusp_arch_suspend_exit() is the first byte of the .hibernate_exit.text section, we cannot fix this by marking swsusp_arch_suspend_exit() with SYM_FUNC_*(). The simplest fix for now is to disable the CFI check in swsusp_arch_resume(). Mark swsusp_arch_resume() as __nocfi to disable the CFI check. [1] [ 22.991934][ T1] Unable to handle kernel paging request at virtual address 0000000109170ffc [ 22.991934][ T1] Mem abort info: [ 22.991934][ T1] ESR = 0x0000000096000007 [ 22.991934][ T1] EC = 0x25: DABT (current EL), IL = 32 bits [ 22.991934][ T1] SET = 0, FnV = 0 [ 22.991934][ T1] EA = 0, S1PTW = 0 [ 22.991934][ T1] FSC = 0x07: level 3 translation fault [ 22.991934][ T1] Data abort info: [ 22.991934][ T1] ISV = 0, ISS = 0x00000007, ISS2 = 0x00000000 [ 22.991934][ T1] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 22.991934][ T1] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 22.991934][ T1] [0000000109170ffc] user address but active_mm is swapper [ 22.991934][ T1] Internal error: Oops: 0000000096000007 [#1] PREEMPT SMP [ 22.991934][ T1] Dumping ftrace buffer: [ 22.991934][ T1] (ftrace buffer empty) [ 22.991934][ T1] Modules linked in: [ 22.991934][ T1] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 6.6.98-android15-8-g0b1d2aee7fc3-dirty-4k #1 688c7060a825a3ac418fe53881730b355915a419 [ 22.991934][ T1] Hardware name: Unisoc UMS9360-base Board (DT) [ 22.991934][ T1] pstate: 804000c5 (Nzcv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 22.991934][ T1] pc : swsusp_arch_resume+0x2ac/0x344 [ 22.991934][ T1] lr : swsusp_arch_resume+0x294/0x344 [ 22.991934][ T1] sp : ffffffc08006b960 [ 22.991934][ T1] x29: ffffffc08006b9c0 x28: 0000000000000000 x27: 0000000000000000 [ 22.991934][ T1] x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000820 [ 22.991934][ T1] x23: ffffffd0817e3000 x22: ffffffd0817e3000 x21: 0000000000000000 [ 22.991934][ T1] x20: ffffff8089171000 x19: ffffffd08252c8c8 x18: ffffffc080061058 [ 22.991934][ T1] x17: 00000000529c6ef0 x16: 00000000529c6ef0 x15: 0000000000000004 [ 22.991934][ T1] x14: ffffff8178c88000 x13: 0000000000000006 x12: 0000000000000000 [ 22.991934][ T1] x11: 0000000000000015 x10: 0000000000000001 x9 : ffffffd082533000 [ 22.991934][ T1] x8 : 0000000109171000 x7 : 205b5d3433393139 x6 : 392e32322020205b [ 22.991934][ T1] x5 : 000000010916f000 x4 : 000000008164b000 x3 : ffffff808a4e0530 [ 22.991934][ T1] x2 : ffffffd08058e784 x1 : 0000000082326000 x0 : 000000010a283000 [ 22.991934][ T1] Call trace: [ 22.991934][ T1] swsusp_arch_resume+0x2ac/0x344 [ 22.991934][ T1] hibernation_restore+0x158/0x18c [ 22.991934][ T1] load_image_and_restore+0xb0/0xec [ 22.991934][ T1] software_resume+0xf4/0x19c [ 22.991934][ T1] software_resume_initcall+0x34/0x78 [ 22.991934][ T1] do_one_initcall+0xe8/0x370 [ 22.991934][ T1] do_initcall_level+0xc8/0x19c [ 22.991934][ T1] do_initcalls+0x70/0xc0 [ 22.991934][ T1] do_basic_setup+0x1c/0x28 [ 22.991934][ T1] kernel_init_freeable+0xe0/0x148 [ 22.991934][ T1] kernel_init+0x20/0x1a8 [ 22.991934][ T1] ret_from_fork+0x10/0x20 [ 22.991934][ T1] Code: a9400a61 f94013e0 f9438923 f9400a64 (b85fc110) [catalin.marinas@arm.com: commit log updated by Mark Rutland]
CVE-2026-23144 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm/damon/sysfs: cleanup attrs subdirs on context dir setup failure When a context DAMON sysfs directory setup is failed after setup of attrs/ directory, subdirectories of attrs/ directory are not cleaned up. As a result, DAMON sysfs interface is nearly broken until the system reboots, and the memory for the unremoved directory is leaked. Cleanup the directories under such failures.
CVE-2026-23153 1 Linux 1 Linux Kernel 2026-02-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: firewire: core: fix race condition against transaction list The list of transaction is enumerated without acquiring card lock when processing AR response event. This causes a race condition bug when processing AT request completion event concurrently. This commit fixes the bug by put timer start for split transaction expiration into the scope of lock. The value of jiffies in card structure is referred before acquiring the lock.
CVE-2026-23156 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: efivarfs: fix error propagation in efivar_entry_get() efivar_entry_get() always returns success even if the underlying __efivar_entry_get() fails, masking errors. This may result in uninitialized heap memory being copied to userspace in the efivarfs_file_read() path. Fix it by returning the error from __efivar_entry_get().