| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: fix iwl_mvm_max_amsdu_size() for MLO
For MLO, we cannot use vif->bss_conf.chandef.chan->band, since
that will lead to a NULL-ptr dereference as bss_conf isn't used.
However, in case of real MLO, we also need to take both LMACs
into account if they exist, since the station might be active
on both LMACs at the same time. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix race when deleting quota root from the dirty cow roots list
When disabling quotas we are deleting the quota root from the list
fs_info->dirty_cowonly_roots without taking the lock that protects it,
which is struct btrfs_fs_info::trans_lock. This unsynchronized list
manipulation may cause chaos if there's another concurrent manipulation
of this list, such as when adding a root to it with
ctree.c:add_root_to_dirty_list().
This can result in all sorts of weird failures caused by a race, such as
the following crash:
[337571.278245] general protection fault, probably for non-canonical address 0xdead000000000108: 0000 [#1] PREEMPT SMP PTI
[337571.278933] CPU: 1 PID: 115447 Comm: btrfs Tainted: G W 6.4.0-rc6-btrfs-next-134+ #1
[337571.279153] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[337571.279572] RIP: 0010:commit_cowonly_roots+0x11f/0x250 [btrfs]
[337571.279928] Code: 85 38 06 00 (...)
[337571.280363] RSP: 0018:ffff9f63446efba0 EFLAGS: 00010206
[337571.280582] RAX: ffff942d98ec2638 RBX: ffff9430b82b4c30 RCX: 0000000449e1c000
[337571.280798] RDX: dead000000000100 RSI: ffff9430021e4900 RDI: 0000000000036070
[337571.281015] RBP: ffff942d98ec2000 R08: ffff942d98ec2000 R09: 000000000000015b
[337571.281254] R10: 0000000000000009 R11: 0000000000000001 R12: ffff942fe8fbf600
[337571.281476] R13: ffff942dabe23040 R14: ffff942dabe20800 R15: ffff942d92cf3b48
[337571.281723] FS: 00007f478adb7340(0000) GS:ffff94349fa40000(0000) knlGS:0000000000000000
[337571.281950] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[337571.282184] CR2: 00007f478ab9a3d5 CR3: 000000001e02c001 CR4: 0000000000370ee0
[337571.282416] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[337571.282647] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[337571.282874] Call Trace:
[337571.283101] <TASK>
[337571.283327] ? __die_body+0x1b/0x60
[337571.283570] ? die_addr+0x39/0x60
[337571.283796] ? exc_general_protection+0x22e/0x430
[337571.284022] ? asm_exc_general_protection+0x22/0x30
[337571.284251] ? commit_cowonly_roots+0x11f/0x250 [btrfs]
[337571.284531] btrfs_commit_transaction+0x42e/0xf90 [btrfs]
[337571.284803] ? _raw_spin_unlock+0x15/0x30
[337571.285031] ? release_extent_buffer+0x103/0x130 [btrfs]
[337571.285305] reset_balance_state+0x152/0x1b0 [btrfs]
[337571.285578] btrfs_balance+0xa50/0x11e0 [btrfs]
[337571.285864] ? __kmem_cache_alloc_node+0x14a/0x410
[337571.286086] btrfs_ioctl+0x249a/0x3320 [btrfs]
[337571.286358] ? mod_objcg_state+0xd2/0x360
[337571.286577] ? refill_obj_stock+0xb0/0x160
[337571.286798] ? seq_release+0x25/0x30
[337571.287016] ? __rseq_handle_notify_resume+0x3ba/0x4b0
[337571.287235] ? percpu_counter_add_batch+0x2e/0xa0
[337571.287455] ? __x64_sys_ioctl+0x88/0xc0
[337571.287675] __x64_sys_ioctl+0x88/0xc0
[337571.287901] do_syscall_64+0x38/0x90
[337571.288126] entry_SYSCALL_64_after_hwframe+0x72/0xdc
[337571.288352] RIP: 0033:0x7f478aaffe9b
So fix this by locking struct btrfs_fs_info::trans_lock before deleting
the quota root from that list. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_conn: return ERR_PTR instead of NULL when there is no link
hci_connect_sco currently returns NULL when there is no link (i.e. when
hci_conn_link() returns NULL).
sco_connect() expects an ERR_PTR in case of any error (see line 266 in
sco.c). Thus, hcon set as NULL passes through to sco_conn_add(), which
tries to get hcon->hdev, resulting in dereferencing a NULL pointer as
reported by syzkaller.
The same issue exists for iso_connect_cis() calling hci_connect_cis().
Thus, make hci_connect_sco() and hci_connect_cis() return ERR_PTR
instead of NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: wavefront: Fix integer overflow in sample size validation
The wavefront_send_sample() function has an integer overflow issue
when validating sample size. The header->size field is u32 but gets
cast to int for comparison with dev->freemem
Fix by using unsigned comparison to avoid integer overflow. |
| Hugging Face Diffusers CogView4 Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Hugging Face Diffusers. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of checkpoints. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-27424. |
| RealDefense SUPERAntiSpyware Exposed Dangerous Function Local Privilege Escalation Vulnerability. This vulnerability allows local attackers to escalate privileges on affected installations of RealDefense SUPERAntiSpyware. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability.
The specific flaw exists within the SAS Core Service. The issue results from an exposed dangerous function. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of SYSTEM. Was ZDI-CAN-27677. |
| RealDefense SUPERAntiSpyware Exposed Dangerous Function Local Privilege Escalation Vulnerability. This vulnerability allows local attackers to escalate privileges on affected installations of RealDefense SUPERAntiSpyware. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability.
The specific flaw exists within the SAS Core Service. The issue results from an exposed dangerous function. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of SYSTEM. Was ZDI-CAN-27678. |
| RealDefense SUPERAntiSpyware Exposed Dangerous Function Local Privilege Escalation Vulnerability. This vulnerability allows local attackers to escalate privileges on affected installations of RealDefense SUPERAntiSpyware. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability.
The specific flaw exists within the SAS Core Service. The issue results from an exposed dangerous function. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of SYSTEM. Was ZDI-CAN-27680. |
| In the Linux kernel, the following vulnerability has been resolved:
devlink: hold region lock when flushing snapshots
Netdevsim triggers a splat on reload, when it destroys regions
with snapshots pending:
WARNING: CPU: 1 PID: 787 at net/core/devlink.c:6291 devlink_region_snapshot_del+0x12e/0x140
CPU: 1 PID: 787 Comm: devlink Not tainted 6.1.0-07460-g7ae9888d6e1c #580
RIP: 0010:devlink_region_snapshot_del+0x12e/0x140
Call Trace:
<TASK>
devl_region_destroy+0x70/0x140
nsim_dev_reload_down+0x2f/0x60 [netdevsim]
devlink_reload+0x1f7/0x360
devlink_nl_cmd_reload+0x6ce/0x860
genl_family_rcv_msg_doit.isra.0+0x145/0x1c0
This is the locking assert in devlink_region_snapshot_del(),
we're supposed to be holding the region->snapshot_lock here. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7921e: fix rmmod crash in driver reload test
In insmod/rmmod stress test, the following crash dump shows up immediately.
The problem is caused by missing mt76_dev in mt7921_pci_remove(). We
should make sure the drvdata is ready before probe() finished.
[168.862789] ==================================================================
[168.862797] BUG: KASAN: user-memory-access in try_to_grab_pending+0x59/0x480
[168.862805] Write of size 8 at addr 0000000000006df0 by task rmmod/5361
[168.862812] CPU: 7 PID: 5361 Comm: rmmod Tainted: G OE 5.19.0-rc6 #1
[168.862816] Hardware name: Intel(R) Client Systems NUC8i7BEH/NUC8BEB, 05/04/2020
[168.862820] Call Trace:
[168.862822] <TASK>
[168.862825] dump_stack_lvl+0x49/0x63
[168.862832] print_report.cold+0x493/0x6b7
[168.862845] kasan_report+0xa7/0x120
[168.862857] kasan_check_range+0x163/0x200
[168.862861] __kasan_check_write+0x14/0x20
[168.862866] try_to_grab_pending+0x59/0x480
[168.862870] __cancel_work_timer+0xbb/0x340
[168.862898] cancel_work_sync+0x10/0x20
[168.862902] mt7921_pci_remove+0x61/0x1c0 [mt7921e]
[168.862909] pci_device_remove+0xa3/0x1d0
[168.862914] device_remove+0xc4/0x170
[168.862920] device_release_driver_internal+0x163/0x300
[168.862925] driver_detach+0xc7/0x1a0
[168.862930] bus_remove_driver+0xeb/0x2d0
[168.862935] driver_unregister+0x71/0xb0
[168.862939] pci_unregister_driver+0x30/0x230
[168.862944] mt7921_pci_driver_exit+0x10/0x1b [mt7921e]
[168.862949] __x64_sys_delete_module+0x2f9/0x4b0
[168.862968] do_syscall_64+0x38/0x90
[168.862973] entry_SYSCALL_64_after_hwframe+0x63/0xcd
Test steps:
1. insmode
2. do not ifup
3. rmmod quickly (within 1 second) |
| In the Linux kernel, the following vulnerability has been resolved:
md/raid1: stop mdx_raid1 thread when raid1 array run failed
fail run raid1 array when we assemble array with the inactive disk only,
but the mdx_raid1 thread were not stop, Even if the associated resources
have been released. it will caused a NULL dereference when we do poweroff.
This causes the following Oops:
[ 287.587787] BUG: kernel NULL pointer dereference, address: 0000000000000070
[ 287.594762] #PF: supervisor read access in kernel mode
[ 287.599912] #PF: error_code(0x0000) - not-present page
[ 287.605061] PGD 0 P4D 0
[ 287.607612] Oops: 0000 [#1] SMP NOPTI
[ 287.611287] CPU: 3 PID: 5265 Comm: md0_raid1 Tainted: G U 5.10.146 #0
[ 287.619029] Hardware name: xxxxxxx/To be filled by O.E.M, BIOS 5.19 06/16/2022
[ 287.626775] RIP: 0010:md_check_recovery+0x57/0x500 [md_mod]
[ 287.632357] Code: fe 01 00 00 48 83 bb 10 03 00 00 00 74 08 48 89 ......
[ 287.651118] RSP: 0018:ffffc90000433d78 EFLAGS: 00010202
[ 287.656347] RAX: 0000000000000000 RBX: ffff888105986800 RCX: 0000000000000000
[ 287.663491] RDX: ffffc90000433bb0 RSI: 00000000ffffefff RDI: ffff888105986800
[ 287.670634] RBP: ffffc90000433da0 R08: 0000000000000000 R09: c0000000ffffefff
[ 287.677771] R10: 0000000000000001 R11: ffffc90000433ba8 R12: ffff888105986800
[ 287.684907] R13: 0000000000000000 R14: fffffffffffffe00 R15: ffff888100b6b500
[ 287.692052] FS: 0000000000000000(0000) GS:ffff888277f80000(0000) knlGS:0000000000000000
[ 287.700149] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 287.705897] CR2: 0000000000000070 CR3: 000000000320a000 CR4: 0000000000350ee0
[ 287.713033] Call Trace:
[ 287.715498] raid1d+0x6c/0xbbb [raid1]
[ 287.719256] ? __schedule+0x1ff/0x760
[ 287.722930] ? schedule+0x3b/0xb0
[ 287.726260] ? schedule_timeout+0x1ed/0x290
[ 287.730456] ? __switch_to+0x11f/0x400
[ 287.734219] md_thread+0xe9/0x140 [md_mod]
[ 287.738328] ? md_thread+0xe9/0x140 [md_mod]
[ 287.742601] ? wait_woken+0x80/0x80
[ 287.746097] ? md_register_thread+0xe0/0xe0 [md_mod]
[ 287.751064] kthread+0x11a/0x140
[ 287.754300] ? kthread_park+0x90/0x90
[ 287.757974] ret_from_fork+0x1f/0x30
In fact, when raid1 array run fail, we need to do
md_unregister_thread() before raid1_free(). |
| In the Linux kernel, the following vulnerability has been resolved:
nvmet-tcp: add bounds check on Transfer Tag
ttag is used as an index to get cmd in nvmet_tcp_handle_h2c_data_pdu(),
add a bounds check to avoid out-of-bounds access. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix pci device refcount leak
As comment of pci_get_domain_bus_and_slot() says, it returns
a pci device with refcount increment, when finish using it,
the caller must decrement the reference count by calling
pci_dev_put().
So before returning from amdgpu_device_resume|suspend_display_audio(),
pci_dev_put() is called to avoid refcount leak. |
| In the Linux kernel, the following vulnerability has been resolved:
bnxt_en: fix memory leak in bnxt_nvm_test()
Free the kzalloc'ed buffer before returning in the success path. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/apic: Don't disable x2APIC if locked
The APIC supports two modes, legacy APIC (or xAPIC), and Extended APIC
(or x2APIC). X2APIC mode is mostly compatible with legacy APIC, but
it disables the memory-mapped APIC interface in favor of one that uses
MSRs. The APIC mode is controlled by the EXT bit in the APIC MSR.
The MMIO/xAPIC interface has some problems, most notably the APIC LEAK
[1]. This bug allows an attacker to use the APIC MMIO interface to
extract data from the SGX enclave.
Introduce support for a new feature that will allow the BIOS to lock
the APIC in x2APIC mode. If the APIC is locked in x2APIC mode and the
kernel tries to disable the APIC or revert to legacy APIC mode a GP
fault will occur.
Introduce support for a new MSR (IA32_XAPIC_DISABLE_STATUS) and handle
the new locked mode when the LEGACY_XAPIC_DISABLED bit is set by
preventing the kernel from trying to disable the x2APIC.
On platforms with the IA32_XAPIC_DISABLE_STATUS MSR, if SGX or TDX are
enabled the LEGACY_XAPIC_DISABLED will be set by the BIOS. If
legacy APIC is required, then it SGX and TDX need to be disabled in the
BIOS.
[1]: https://aepicleak.com/aepicleak.pdf |
| In the Linux kernel, the following vulnerability has been resolved:
regulator: core: fix resource leak in regulator_register()
I got some resource leak reports while doing fault injection test:
OF: ERROR: memory leak, expected refcount 1 instead of 100,
of_node_get()/of_node_put() unbalanced - destroy cset entry:
attach overlay node /i2c/pmic@64/regulators/buck1
unreferenced object 0xffff88810deea000 (size 512):
comm "490-i2c-rt5190a", pid 253, jiffies 4294859840 (age 5061.046s)
hex dump (first 32 bytes):
00 00 00 00 ad 4e ad de ff ff ff ff 00 00 00 00 .....N..........
ff ff ff ff ff ff ff ff a0 1e 00 a1 ff ff ff ff ................
backtrace:
[<00000000d78541e2>] kmalloc_trace+0x21/0x110
[<00000000b343d153>] device_private_init+0x32/0xd0
[<00000000be1f0c70>] device_add+0xb2d/0x1030
[<00000000e3e6344d>] regulator_register+0xaf2/0x12a0
[<00000000e2f5e754>] devm_regulator_register+0x57/0xb0
[<000000008b898197>] rt5190a_probe+0x52a/0x861 [rt5190a_regulator]
unreferenced object 0xffff88810b617b80 (size 32):
comm "490-i2c-rt5190a", pid 253, jiffies 4294859904 (age 5060.983s)
hex dump (first 32 bytes):
72 65 67 75 6c 61 74 6f 72 2e 32 38 36 38 2d 53 regulator.2868-S
55 50 50 4c 59 00 ff ff 29 00 00 00 2b 00 00 00 UPPLY...)...+...
backtrace:
[<000000009da9280d>] __kmalloc_node_track_caller+0x44/0x1b0
[<0000000025c6a4e5>] kstrdup+0x3a/0x70
[<00000000790efb69>] create_regulator+0xc0/0x4e0
[<0000000005ed203a>] regulator_resolve_supply+0x2d4/0x440
[<0000000045796214>] regulator_register+0x10b3/0x12a0
[<00000000e2f5e754>] devm_regulator_register+0x57/0xb0
[<000000008b898197>] rt5190a_probe+0x52a/0x861 [rt5190a_regulator]
After calling regulator_resolve_supply(), the 'rdev->supply' is set
by set_supply(), after this set, in the error path, the resources
need be released, so call regulator_put() to avoid the leaks. |
| In the Linux kernel, the following vulnerability has been resolved:
media: vidtv: Fix use-after-free in vidtv_bridge_dvb_init()
KASAN reports a use-after-free:
BUG: KASAN: use-after-free in dvb_dmxdev_release+0x4d5/0x5d0 [dvb_core]
Call Trace:
...
dvb_dmxdev_release+0x4d5/0x5d0 [dvb_core]
vidtv_bridge_probe+0x7bf/0xa40 [dvb_vidtv_bridge]
platform_probe+0xb6/0x170
...
Allocated by task 1238:
...
dvb_register_device+0x1a7/0xa70 [dvb_core]
dvb_dmxdev_init+0x2af/0x4a0 [dvb_core]
vidtv_bridge_probe+0x766/0xa40 [dvb_vidtv_bridge]
...
Freed by task 1238:
dvb_register_device+0x6d2/0xa70 [dvb_core]
dvb_dmxdev_init+0x2af/0x4a0 [dvb_core]
vidtv_bridge_probe+0x766/0xa40 [dvb_vidtv_bridge]
...
It is because the error handling in vidtv_bridge_dvb_init() is wrong.
First, vidtv_bridge_dmx(dev)_init() will clean themselves when fail, but
goto fail_dmx(_dev): calls release functions again, which causes
use-after-free.
Also, in fail_fe, fail_tuner_probe and fail_demod_probe, j = i will cause
out-of-bound when i finished its loop (i == NUM_FE). And the loop
releasing is wrong, although now NUM_FE is 1 so it won't cause problem.
Fix this by correctly releasing everything. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: efct: Fix possible memleak in efct_device_init()
In efct_device_init(), when efct_scsi_reg_fc_transport() fails,
efct_scsi_tgt_driver_exit() is not called to release memory for
efct_scsi_tgt_driver_init() and causes memleak:
unreferenced object 0xffff8881020ce000 (size 2048):
comm "modprobe", pid 465, jiffies 4294928222 (age 55.872s)
backtrace:
[<0000000021a1ef1b>] kmalloc_trace+0x27/0x110
[<000000004c3ed51c>] target_register_template+0x4fd/0x7b0 [target_core_mod]
[<00000000f3393296>] efct_scsi_tgt_driver_init+0x18/0x50 [efct]
[<00000000115de533>] 0xffffffffc0d90011
[<00000000d608f646>] do_one_initcall+0xd0/0x4e0
[<0000000067828cf1>] do_init_module+0x1cc/0x6a0
... |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: silence the warning when evicting inode with dioread_nolock
When evicting an inode with default dioread_nolock, it could be raced by
the unwritten extents converting kworker after writeback some new
allocated dirty blocks. It convert unwritten extents to written, the
extents could be merged to upper level and free extent blocks, so it
could mark the inode dirty again even this inode has been marked
I_FREEING. But the inode->i_io_list check and warning in
ext4_evict_inode() missing this corner case. Fortunately,
ext4_evict_inode() will wait all extents converting finished before this
check, so it will not lead to inode use-after-free problem, every thing
is OK besides this warning. The WARN_ON_ONCE was originally designed
for finding inode use-after-free issues in advance, but if we add
current dioread_nolock case in, it will become not quite useful, so fix
this warning by just remove this check.
======
WARNING: CPU: 7 PID: 1092 at fs/ext4/inode.c:227
ext4_evict_inode+0x875/0xc60
...
RIP: 0010:ext4_evict_inode+0x875/0xc60
...
Call Trace:
<TASK>
evict+0x11c/0x2b0
iput+0x236/0x3a0
do_unlinkat+0x1b4/0x490
__x64_sys_unlinkat+0x4c/0xb0
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x46/0xb0
RIP: 0033:0x7fa933c1115b
======
rm kworker
ext4_end_io_end()
vfs_unlink()
ext4_unlink()
ext4_convert_unwritten_io_end_vec()
ext4_convert_unwritten_extents()
ext4_map_blocks()
ext4_ext_map_blocks()
ext4_ext_try_to_merge_up()
__mark_inode_dirty()
check !I_FREEING
locked_inode_to_wb_and_lock_list()
iput()
iput_final()
evict()
ext4_evict_inode()
truncate_inode_pages_final() //wait release io_end
inode_io_list_move_locked()
ext4_release_io_end()
trigger WARN_ON_ONCE() |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: akcipher - default implementation for setting a private key
Changes from v1:
* removed the default implementation from set_pub_key: it is assumed that
an implementation must always have this callback defined as there are
no use case for an algorithm, which doesn't need a public key
Many akcipher implementations (like ECDSA) support only signature
verifications, so they don't have all callbacks defined.
Commit 78a0324f4a53 ("crypto: akcipher - default implementations for
request callbacks") introduced default callbacks for sign/verify
operations, which just return an error code.
However, these are not enough, because before calling sign the caller would
likely call set_priv_key first on the instantiated transform (as the
in-kernel testmgr does). This function does not have a default stub, so the
kernel crashes, when trying to set a private key on an akcipher, which
doesn't support signature generation.
I've noticed this, when trying to add a KAT vector for ECDSA signature to
the testmgr.
With this patch the testmgr returns an error in dmesg (as it should)
instead of crashing the kernel NULL ptr dereference. |