| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Out of bounds read in V8 in Google Chrome prior to 142.0.7444.59 allowed a remote attacker to perform an out of bounds memory read via a crafted HTML page. (Chromium security severity: Medium) |
| Out of bounds read in WebXR in Google Chrome prior to 142.0.7444.59 allowed a remote attacker to perform an out of bounds memory read via a crafted HTML page. (Chromium security severity: Medium) |
| A maliciously crafted X_B file, when parsed in pskernel.DLL through Autodesk applications, can force an Out-of-Bound Read. A malicious actor can leverage this vulnerability to cause a crash,read sensitive data, or execute arbitrary code in the context of the current process. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: Fix an illegal memory access
In the kfd_wait_on_events() function, the kfd_event_waiter structure is
allocated by alloc_event_waiters(), but the event field of the waiter
structure is not initialized; When copy_from_user() fails in the
kfd_wait_on_events() function, it will enter exception handling to
release the previously allocated memory of the waiter structure;
Due to the event field of the waiters structure being accessed
in the free_waiters() function, this results in illegal memory access
and system crash, here is the crash log:
localhost kernel: RIP: 0010:native_queued_spin_lock_slowpath+0x185/0x1e0
localhost kernel: RSP: 0018:ffffaa53c362bd60 EFLAGS: 00010082
localhost kernel: RAX: ff3d3d6bff4007cb RBX: 0000000000000282 RCX: 00000000002c0000
localhost kernel: RDX: ffff9e855eeacb80 RSI: 000000000000279c RDI: ffffe7088f6a21d0
localhost kernel: RBP: ffffe7088f6a21d0 R08: 00000000002c0000 R09: ffffaa53c362be64
localhost kernel: R10: ffffaa53c362bbd8 R11: 0000000000000001 R12: 0000000000000002
localhost kernel: R13: ffff9e7ead15d600 R14: 0000000000000000 R15: ffff9e7ead15d698
localhost kernel: FS: 0000152a3d111700(0000) GS:ffff9e855ee80000(0000) knlGS:0000000000000000
localhost kernel: CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
localhost kernel: CR2: 0000152938000010 CR3: 000000044d7a4000 CR4: 00000000003506e0
localhost kernel: Call Trace:
localhost kernel: _raw_spin_lock_irqsave+0x30/0x40
localhost kernel: remove_wait_queue+0x12/0x50
localhost kernel: kfd_wait_on_events+0x1b6/0x490 [hydcu]
localhost kernel: ? ftrace_graph_caller+0xa0/0xa0
localhost kernel: kfd_ioctl+0x38c/0x4a0 [hydcu]
localhost kernel: ? kfd_ioctl_set_trap_handler+0x70/0x70 [hydcu]
localhost kernel: ? kfd_ioctl_create_queue+0x5a0/0x5a0 [hydcu]
localhost kernel: ? ftrace_graph_caller+0xa0/0xa0
localhost kernel: __x64_sys_ioctl+0x8e/0xd0
localhost kernel: ? syscall_trace_enter.isra.18+0x143/0x1b0
localhost kernel: do_syscall_64+0x33/0x80
localhost kernel: entry_SYSCALL_64_after_hwframe+0x44/0xa9
localhost kernel: RIP: 0033:0x152a4dff68d7
Allocate the structure with kcalloc, and remove redundant 0-initialization
and a redundant loop condition check. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: HCI: Fix global-out-of-bounds
To loop a variable-length array, hci_init_stage_sync(stage) considers
that stage[i] is valid as long as stage[i-1].func is valid.
Thus, the last element of stage[].func should be intentionally invalid
as hci_init0[], le_init2[], and others did.
However, amp_init1[] and amp_init2[] have no invalid element, letting
hci_init_stage_sync() keep accessing amp_init1[] over its valid range.
This patch fixes this by adding {} in the last of amp_init1[] and
amp_init2[].
==================================================================
BUG: KASAN: global-out-of-bounds in hci_dev_open_sync (
/v6.2-bzimage/net/bluetooth/hci_sync.c:3154
/v6.2-bzimage/net/bluetooth/hci_sync.c:3343
/v6.2-bzimage/net/bluetooth/hci_sync.c:4418
/v6.2-bzimage/net/bluetooth/hci_sync.c:4609
/v6.2-bzimage/net/bluetooth/hci_sync.c:4689)
Read of size 8 at addr ffffffffaed1ab70 by task kworker/u5:0/1032
CPU: 0 PID: 1032 Comm: kworker/u5:0 Not tainted 6.2.0 #3
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04
Workqueue: hci1 hci_power_on
Call Trace:
<TASK>
dump_stack_lvl (/v6.2-bzimage/lib/dump_stack.c:107 (discriminator 1))
print_report (/v6.2-bzimage/mm/kasan/report.c:307
/v6.2-bzimage/mm/kasan/report.c:417)
? hci_dev_open_sync (/v6.2-bzimage/net/bluetooth/hci_sync.c:3154
/v6.2-bzimage/net/bluetooth/hci_sync.c:3343
/v6.2-bzimage/net/bluetooth/hci_sync.c:4418
/v6.2-bzimage/net/bluetooth/hci_sync.c:4609
/v6.2-bzimage/net/bluetooth/hci_sync.c:4689)
kasan_report (/v6.2-bzimage/mm/kasan/report.c:184
/v6.2-bzimage/mm/kasan/report.c:519)
? hci_dev_open_sync (/v6.2-bzimage/net/bluetooth/hci_sync.c:3154
/v6.2-bzimage/net/bluetooth/hci_sync.c:3343
/v6.2-bzimage/net/bluetooth/hci_sync.c:4418
/v6.2-bzimage/net/bluetooth/hci_sync.c:4609
/v6.2-bzimage/net/bluetooth/hci_sync.c:4689)
hci_dev_open_sync (/v6.2-bzimage/net/bluetooth/hci_sync.c:3154
/v6.2-bzimage/net/bluetooth/hci_sync.c:3343
/v6.2-bzimage/net/bluetooth/hci_sync.c:4418
/v6.2-bzimage/net/bluetooth/hci_sync.c:4609
/v6.2-bzimage/net/bluetooth/hci_sync.c:4689)
? __pfx_hci_dev_open_sync (/v6.2-bzimage/net/bluetooth/hci_sync.c:4635)
? mutex_lock (/v6.2-bzimage/./arch/x86/include/asm/atomic64_64.h:190
/v6.2-bzimage/./include/linux/atomic/atomic-long.h:443
/v6.2-bzimage/./include/linux/atomic/atomic-instrumented.h:1781
/v6.2-bzimage/kernel/locking/mutex.c:171
/v6.2-bzimage/kernel/locking/mutex.c:285)
? __pfx_mutex_lock (/v6.2-bzimage/kernel/locking/mutex.c:282)
hci_power_on (/v6.2-bzimage/net/bluetooth/hci_core.c:485
/v6.2-bzimage/net/bluetooth/hci_core.c:984)
? __pfx_hci_power_on (/v6.2-bzimage/net/bluetooth/hci_core.c:969)
? read_word_at_a_time (/v6.2-bzimage/./include/asm-generic/rwonce.h:85)
? strscpy (/v6.2-bzimage/./arch/x86/include/asm/word-at-a-time.h:62
/v6.2-bzimage/lib/string.c:161)
process_one_work (/v6.2-bzimage/kernel/workqueue.c:2294)
worker_thread (/v6.2-bzimage/./include/linux/list.h:292
/v6.2-bzimage/kernel/workqueue.c:2437)
? __pfx_worker_thread (/v6.2-bzimage/kernel/workqueue.c:2379)
kthread (/v6.2-bzimage/kernel/kthread.c:376)
? __pfx_kthread (/v6.2-bzimage/kernel/kthread.c:331)
ret_from_fork (/v6.2-bzimage/arch/x86/entry/entry_64.S:314)
</TASK>
The buggy address belongs to the variable:
amp_init1+0x30/0x60
The buggy address belongs to the physical page:
page:000000003a157ec6 refcount:1 mapcount:0 mapping:0000000000000000 ia
flags: 0x200000000001000(reserved|node=0|zone=2)
raw: 0200000000001000 ffffea0005054688 ffffea0005054688 000000000000000
raw: 0000000000000000 0000000000000000 00000001ffffffff 000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffffffffaed1aa00: f9 f9 f9 f9 00 00 00 00 f9 f9 f9 f9 00 00 00 00
ffffffffaed1aa80: 00 00 00 00 f9 f9 f9 f9 00 00 00 00 00 00 00 00
>ffffffffaed1ab00: 00 f9 f9 f9 f9 f9 f9 f9 00 00 00 00 00 00 f9 f9
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
9p/net: fix improper handling of bogus negative read/write replies
In p9_client_write() and p9_client_read_once(), if the server
incorrectly replies with success but a negative write/read count then we
would consider written (negative) <= rsize (positive) because both
variables were signed.
Make variables unsigned to avoid this problem.
The reproducer linked below now fails with the following error instead
of a null pointer deref:
9pnet: bogus RWRITE count (4294967295 > 3) |
| An uninitialized stack read issue exists in Amazon Ion-C versions <v1.1.4 that may allow a threat actor to craft data and serialize it to Ion text in such a way that sensitive data in memory could be exposed through UTF-8 escape sequences. To mitigate this issue, users should upgrade to version v1.1.4. |
| Redis is an open source, in-memory database that persists on disk. Versions 8.2.1 and below allow an authenticated user to use a specially crafted LUA script to read out-of-bound data or crash the server and subsequent denial of service. The problem exists in all versions of Redis with Lua scripting. This issue is fixed in version 8.2.2. To workaround this issue without patching the redis-server executable is to prevent users from executing Lua scripts. This can be done using ACL to block a script by restricting both the EVAL and FUNCTION command families. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: x86: smm: number of GPRs in the SMRAM image depends on the image format
On 64 bit host, if the guest doesn't have X86_FEATURE_LM, KVM will
access 16 gprs to 32-bit smram image, causing out-ouf-bound ram
access.
On 32 bit host, the rsm_load_state_64/enter_smm_save_state_64
is compiled out, thus access overflow can't happen. |
| In the Linux kernel, the following vulnerability has been resolved:
capabilities: fix undefined behavior in bit shift for CAP_TO_MASK
Shifting signed 32-bit value by 31 bits is undefined, so changing
significant bit to unsigned. The UBSAN warning calltrace like below:
UBSAN: shift-out-of-bounds in security/commoncap.c:1252:2
left shift of 1 by 31 places cannot be represented in type 'int'
Call Trace:
<TASK>
dump_stack_lvl+0x7d/0xa5
dump_stack+0x15/0x1b
ubsan_epilogue+0xe/0x4e
__ubsan_handle_shift_out_of_bounds+0x1e7/0x20c
cap_task_prctl+0x561/0x6f0
security_task_prctl+0x5a/0xb0
__x64_sys_prctl+0x61/0x8f0
do_syscall_64+0x58/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: fix reserved memory setup
Currently, RISC-V sets up reserved memory using the "early" copy of the
device tree. As a result, when trying to get a reserved memory region
using of_reserved_mem_lookup(), the pointer to reserved memory regions
is using the early, pre-virtual-memory address which causes a kernel
panic when trying to use the buffer's name:
Unable to handle kernel paging request at virtual address 00000000401c31ac
Oops [#1]
Modules linked in:
CPU: 0 PID: 0 Comm: swapper Not tainted 6.0.0-rc1-00001-g0d9d6953d834 #1
Hardware name: Microchip PolarFire-SoC Icicle Kit (DT)
epc : string+0x4a/0xea
ra : vsnprintf+0x1e4/0x336
epc : ffffffff80335ea0 ra : ffffffff80338936 sp : ffffffff81203be0
gp : ffffffff812e0a98 tp : ffffffff8120de40 t0 : 0000000000000000
t1 : ffffffff81203e28 t2 : 7265736572203a46 s0 : ffffffff81203c20
s1 : ffffffff81203e28 a0 : ffffffff81203d22 a1 : 0000000000000000
a2 : ffffffff81203d08 a3 : 0000000081203d21 a4 : ffffffffffffffff
a5 : 00000000401c31ac a6 : ffff0a00ffffff04 a7 : ffffffffffffffff
s2 : ffffffff81203d08 s3 : ffffffff81203d00 s4 : 0000000000000008
s5 : ffffffff000000ff s6 : 0000000000ffffff s7 : 00000000ffffff00
s8 : ffffffff80d9821a s9 : ffffffff81203d22 s10: 0000000000000002
s11: ffffffff80d9821c t3 : ffffffff812f3617 t4 : ffffffff812f3617
t5 : ffffffff812f3618 t6 : ffffffff81203d08
status: 0000000200000100 badaddr: 00000000401c31ac cause: 000000000000000d
[<ffffffff80338936>] vsnprintf+0x1e4/0x336
[<ffffffff80055ae2>] vprintk_store+0xf6/0x344
[<ffffffff80055d86>] vprintk_emit+0x56/0x192
[<ffffffff80055ed8>] vprintk_default+0x16/0x1e
[<ffffffff800563d2>] vprintk+0x72/0x80
[<ffffffff806813b2>] _printk+0x36/0x50
[<ffffffff8068af48>] print_reserved_mem+0x1c/0x24
[<ffffffff808057ec>] paging_init+0x528/0x5bc
[<ffffffff808031ae>] setup_arch+0xd0/0x592
[<ffffffff8080070e>] start_kernel+0x82/0x73c
early_init_fdt_scan_reserved_mem() takes no arguments as it operates on
initial_boot_params, which is populated by early_init_dt_verify(). On
RISC-V, early_init_dt_verify() is called twice. Once, directly, in
setup_arch() if CONFIG_BUILTIN_DTB is not enabled and once indirectly,
very early in the boot process, by parse_dtb() when it calls
early_init_dt_scan_nodes().
This first call uses dtb_early_va to set initial_boot_params, which is
not usable later in the boot process when
early_init_fdt_scan_reserved_mem() is called. On arm64 for example, the
corresponding call to early_init_dt_scan_nodes() uses fixmap addresses
and doesn't suffer the same fate.
Move early_init_fdt_scan_reserved_mem() further along the boot sequence,
after the direct call to early_init_dt_verify() in setup_arch() so that
the names use the correct virtual memory addresses. The above supposed
that CONFIG_BUILTIN_DTB was not set, but should work equally in the case
where it is - unflatted_and_copy_device_tree() also updates
initial_boot_params. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915/sseu: fix max_subslices array-index-out-of-bounds access
It seems that commit bc3c5e0809ae ("drm/i915/sseu: Don't try to store EU
mask internally in UAPI format") exposed a potential out-of-bounds
access, reported by UBSAN as following on a laptop with a gen 11 i915
card:
UBSAN: array-index-out-of-bounds in drivers/gpu/drm/i915/gt/intel_sseu.c:65:27
index 6 is out of range for type 'u16 [6]'
CPU: 2 PID: 165 Comm: systemd-udevd Not tainted 6.2.0-9-generic #9-Ubuntu
Hardware name: Dell Inc. XPS 13 9300/077Y9N, BIOS 1.11.0 03/22/2022
Call Trace:
<TASK>
show_stack+0x4e/0x61
dump_stack_lvl+0x4a/0x6f
dump_stack+0x10/0x18
ubsan_epilogue+0x9/0x3a
__ubsan_handle_out_of_bounds.cold+0x42/0x47
gen11_compute_sseu_info+0x121/0x130 [i915]
intel_sseu_info_init+0x15d/0x2b0 [i915]
intel_gt_init_mmio+0x23/0x40 [i915]
i915_driver_mmio_probe+0x129/0x400 [i915]
? intel_gt_probe_all+0x91/0x2e0 [i915]
i915_driver_probe+0xe1/0x3f0 [i915]
? drm_privacy_screen_get+0x16d/0x190 [drm]
? acpi_dev_found+0x64/0x80
i915_pci_probe+0xac/0x1b0 [i915]
...
According to the definition of sseu_dev_info, eu_mask->hsw is limited to
a maximum of GEN_MAX_SS_PER_HSW_SLICE (6) sub-slices, but
gen11_sseu_info_init() can potentially set 8 sub-slices, in the
!IS_JSL_EHL(gt->i915) case.
Fix this by reserving up to 8 slots for max_subslices in the eu_mask
struct.
(cherry picked from commit 3cba09a6ac86ea1d456909626eb2685596c07822) |
| In the Linux kernel, the following vulnerability has been resolved:
fs: prevent out-of-bounds array speculation when closing a file descriptor
Google-Bug-Id: 114199369 |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: Use READ_ONCE_NOCHECK in imprecise unwinding stack mode
When CONFIG_FRAME_POINTER is unset, the stack unwinding function
walk_stackframe randomly reads the stack and then, when KASAN is enabled,
it can lead to the following backtrace:
[ 0.000000] ==================================================================
[ 0.000000] BUG: KASAN: stack-out-of-bounds in walk_stackframe+0xa6/0x11a
[ 0.000000] Read of size 8 at addr ffffffff81807c40 by task swapper/0
[ 0.000000]
[ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 6.2.0-12919-g24203e6db61f #43
[ 0.000000] Hardware name: riscv-virtio,qemu (DT)
[ 0.000000] Call Trace:
[ 0.000000] [<ffffffff80007ba8>] walk_stackframe+0x0/0x11a
[ 0.000000] [<ffffffff80099ecc>] init_param_lock+0x26/0x2a
[ 0.000000] [<ffffffff80007c4a>] walk_stackframe+0xa2/0x11a
[ 0.000000] [<ffffffff80c49c80>] dump_stack_lvl+0x22/0x36
[ 0.000000] [<ffffffff80c3783e>] print_report+0x198/0x4a8
[ 0.000000] [<ffffffff80099ecc>] init_param_lock+0x26/0x2a
[ 0.000000] [<ffffffff80007c4a>] walk_stackframe+0xa2/0x11a
[ 0.000000] [<ffffffff8015f68a>] kasan_report+0x9a/0xc8
[ 0.000000] [<ffffffff80007c4a>] walk_stackframe+0xa2/0x11a
[ 0.000000] [<ffffffff80007c4a>] walk_stackframe+0xa2/0x11a
[ 0.000000] [<ffffffff8006e99c>] desc_make_final+0x80/0x84
[ 0.000000] [<ffffffff8009a04e>] stack_trace_save+0x88/0xa6
[ 0.000000] [<ffffffff80099fc2>] filter_irq_stacks+0x72/0x76
[ 0.000000] [<ffffffff8006b95e>] devkmsg_read+0x32a/0x32e
[ 0.000000] [<ffffffff8015ec16>] kasan_save_stack+0x28/0x52
[ 0.000000] [<ffffffff8006e998>] desc_make_final+0x7c/0x84
[ 0.000000] [<ffffffff8009a04a>] stack_trace_save+0x84/0xa6
[ 0.000000] [<ffffffff8015ec52>] kasan_set_track+0x12/0x20
[ 0.000000] [<ffffffff8015f22e>] __kasan_slab_alloc+0x58/0x5e
[ 0.000000] [<ffffffff8015e7ea>] __kmem_cache_create+0x21e/0x39a
[ 0.000000] [<ffffffff80e133ac>] create_boot_cache+0x70/0x9c
[ 0.000000] [<ffffffff80e17ab2>] kmem_cache_init+0x6c/0x11e
[ 0.000000] [<ffffffff80e00fd6>] mm_init+0xd8/0xfe
[ 0.000000] [<ffffffff80e011d8>] start_kernel+0x190/0x3ca
[ 0.000000]
[ 0.000000] The buggy address belongs to stack of task swapper/0
[ 0.000000] and is located at offset 0 in frame:
[ 0.000000] stack_trace_save+0x0/0xa6
[ 0.000000]
[ 0.000000] This frame has 1 object:
[ 0.000000] [32, 56) 'c'
[ 0.000000]
[ 0.000000] The buggy address belongs to the physical page:
[ 0.000000] page:(____ptrval____) refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x81a07
[ 0.000000] flags: 0x1000(reserved|zone=0)
[ 0.000000] raw: 0000000000001000 ff600003f1e3d150 ff600003f1e3d150 0000000000000000
[ 0.000000] raw: 0000000000000000 0000000000000000 00000001ffffffff
[ 0.000000] page dumped because: kasan: bad access detected
[ 0.000000]
[ 0.000000] Memory state around the buggy address:
[ 0.000000] ffffffff81807b00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[ 0.000000] ffffffff81807b80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[ 0.000000] >ffffffff81807c00: 00 00 00 00 00 00 00 00 f1 f1 f1 f1 00 00 00 f3
[ 0.000000] ^
[ 0.000000] ffffffff81807c80: f3 f3 f3 f3 00 00 00 00 00 00 00 00 00 00 00 00
[ 0.000000] ffffffff81807d00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[ 0.000000] ==================================================================
Fix that by using READ_ONCE_NOCHECK when reading the stack in imprecise
mode. |
| In the Linux kernel, the following vulnerability has been resolved:
af_unix: fix struct pid leaks in OOB support
syzbot reported struct pid leak [1].
Issue is that queue_oob() calls maybe_add_creds() which potentially
holds a reference on a pid.
But skb->destructor is not set (either directly or by calling
unix_scm_to_skb())
This means that subsequent kfree_skb() or consume_skb() would leak
this reference.
In this fix, I chose to fully support scm even for the OOB message.
[1]
BUG: memory leak
unreferenced object 0xffff8881053e7f80 (size 128):
comm "syz-executor242", pid 5066, jiffies 4294946079 (age 13.220s)
hex dump (first 32 bytes):
01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<ffffffff812ae26a>] alloc_pid+0x6a/0x560 kernel/pid.c:180
[<ffffffff812718df>] copy_process+0x169f/0x26c0 kernel/fork.c:2285
[<ffffffff81272b37>] kernel_clone+0xf7/0x610 kernel/fork.c:2684
[<ffffffff812730cc>] __do_sys_clone+0x7c/0xb0 kernel/fork.c:2825
[<ffffffff849ad699>] do_syscall_x64 arch/x86/entry/common.c:50 [inline]
[<ffffffff849ad699>] do_syscall_64+0x39/0xb0 arch/x86/entry/common.c:80
[<ffffffff84a0008b>] entry_SYSCALL_64_after_hwframe+0x63/0xcd |
| In the Linux kernel, the following vulnerability has been resolved:
net_sched: keep alloc_hash updated after hash allocation
In commit 599be01ee567 ("net_sched: fix an OOB access in cls_tcindex")
I moved cp->hash calculation before the first
tcindex_alloc_perfect_hash(), but cp->alloc_hash is left untouched.
This difference could lead to another out of bound access.
cp->alloc_hash should always be the size allocated, we should
update it after this tcindex_alloc_perfect_hash(). |
| In the Linux kernel, the following vulnerability has been resolved:
nvmet: fix out-of-bounds access in nvmet_enable_port
When trying to enable a port that has no transport configured yet,
nvmet_enable_port() uses NVMF_TRTYPE_MAX (255) to query the transports
array, causing an out-of-bounds access:
[ 106.058694] BUG: KASAN: global-out-of-bounds in nvmet_enable_port+0x42/0x1da
[ 106.058719] Read of size 8 at addr ffffffff89dafa58 by task ln/632
[...]
[ 106.076026] nvmet: transport type 255 not supported
Since commit 200adac75888, NVMF_TRTYPE_MAX is the default state as configured by
nvmet_ports_make().
Avoid this by checking for NVMF_TRTYPE_MAX before proceeding. |
| Heap-based buffer overflow in Windows Routing and Remote Access Service (RRAS) allows an unauthorized attacker to execute code over a network. |
| A flaw was found in the virtio-net device in QEMU. When enabling the RSS feature on the virtio-net network card, the indirections_table data within RSS becomes controllable. Setting excessively large values may cause an index out-of-bounds issue, potentially resulting in heap overflow access. This flaw allows a privileged user in the guest to crash the QEMU process on the host. |
| A flaw was found in the IPv4 Resource Reservation Protocol (RSVP) classifier in the Linux kernel. The xprt pointer may go beyond the linear part of the skb, leading to an out-of-bounds read in the `rsvp_classify` function. This issue may allow a local user to crash the system and cause a denial of service. |