| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Orangescrum 1.8.0 contains a privilege escalation vulnerability that allows authenticated users to take over other project-assigned accounts by manipulating session cookies. Attackers can extract the victim's unique ID from the page source and replace their own session cookie to gain unauthorized access to another user's account. |
| Orangescrum 1.8.0 contains an authenticated SQL injection vulnerability that allows authorized users to manipulate database queries through multiple vulnerable parameters. Attackers can inject malicious SQL code into parameters like old_project_id, project_id, uuid, and uniqid to potentially extract or modify database information. |
| CMSimple 5.2 contains a stored cross-site scripting vulnerability in the Filebrowser External input field that allows attackers to inject malicious JavaScript. Attackers can place unfiltered JavaScript code that executes when users click on Page or Files tabs, enabling persistent script injection. |
| NVIDIA Isaac Launchable contains a vulnerability where an attacker could cause an execution with unnecessary privileges. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, denial of service, information disclosure and data tampering. |
| Netgear EX8000 V1.0.0.126 is vulnerable to Command Injection via the iface parameter in the action_bandwidth function. |
| NVIDIA Isaac Launchable contains a vulnerability where an attacker could cause an execution with unnecessary privileges. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, denial of service, information disclosure and data tampering. |
| Home Assistant Core before v2025.8.0 is vulnerable to Directory Traversal. The Downloader integration does not fully validate file paths during concatenation, leaving a path traversal vulnerability. |
| eProsima Fast-DDS v3.3 was discovered to contain improper validation for ticket revocation, resulting in insecure communications and connections. |
| pdfforge PDF Architect Launch Insufficient UI Warning Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of pdfforge PDF Architect. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the implementation of the Launch action. The issue results from allowing the execution of dangerous script without user warning. An attacker can leverage this vulnerability to execute code in the context of the current user. Was ZDI-CAN-27501. |
| CMSimple 5.4 contains an authenticated local file inclusion vulnerability that allows remote attackers to manipulate PHP session files and execute arbitrary code. Attackers can leverage the vulnerability by changing the functions file path and uploading malicious PHP code through session file upload mechanisms. |
| CMSimple 5.4 contains an authenticated remote code execution vulnerability that allows logged-in attackers to inject malicious PHP code into template files. Attackers can exploit the template editing functionality by crafting a reverse shell payload and saving it through the template editing endpoint with a valid CSRF token. |
| CMSimple_XH 1.7.4 contains an authenticated remote code execution vulnerability in the content editing functionality that allows administrative users to upload malicious PHP files. Attackers with valid credentials can exploit the CSRF token mechanism to create a PHP shell file that enables arbitrary command execution on the server. |
| Epic Games Easy Anti-Cheat 4.0 contains an unquoted service path vulnerability that allows local non-privileged users to execute arbitrary code with elevated system privileges. Attackers can exploit the service configuration by inserting malicious code in the system root path that would execute with LocalSystem privileges during application startup. |
| In the Linux kernel, the following vulnerability has been resolved:
mrp: introduce active flags to prevent UAF when applicant uninit
The caller of del_timer_sync must prevent restarting of the timer, If
we have no this synchronization, there is a small probability that the
cancellation will not be successful.
And syzbot report the fellowing crash:
==================================================================
BUG: KASAN: use-after-free in hlist_add_head include/linux/list.h:929 [inline]
BUG: KASAN: use-after-free in enqueue_timer+0x18/0xa4 kernel/time/timer.c:605
Write at addr f9ff000024df6058 by task syz-fuzzer/2256
Pointer tag: [f9], memory tag: [fe]
CPU: 1 PID: 2256 Comm: syz-fuzzer Not tainted 6.1.0-rc5-syzkaller-00008-
ge01d50cbd6ee #0
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace.part.0+0xe0/0xf0 arch/arm64/kernel/stacktrace.c:156
dump_backtrace arch/arm64/kernel/stacktrace.c:162 [inline]
show_stack+0x18/0x40 arch/arm64/kernel/stacktrace.c:163
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x68/0x84 lib/dump_stack.c:106
print_address_description mm/kasan/report.c:284 [inline]
print_report+0x1a8/0x4a0 mm/kasan/report.c:395
kasan_report+0x94/0xb4 mm/kasan/report.c:495
__do_kernel_fault+0x164/0x1e0 arch/arm64/mm/fault.c:320
do_bad_area arch/arm64/mm/fault.c:473 [inline]
do_tag_check_fault+0x78/0x8c arch/arm64/mm/fault.c:749
do_mem_abort+0x44/0x94 arch/arm64/mm/fault.c:825
el1_abort+0x40/0x60 arch/arm64/kernel/entry-common.c:367
el1h_64_sync_handler+0xd8/0xe4 arch/arm64/kernel/entry-common.c:427
el1h_64_sync+0x64/0x68 arch/arm64/kernel/entry.S:576
hlist_add_head include/linux/list.h:929 [inline]
enqueue_timer+0x18/0xa4 kernel/time/timer.c:605
mod_timer+0x14/0x20 kernel/time/timer.c:1161
mrp_periodic_timer_arm net/802/mrp.c:614 [inline]
mrp_periodic_timer+0xa0/0xc0 net/802/mrp.c:627
call_timer_fn.constprop.0+0x24/0x80 kernel/time/timer.c:1474
expire_timers+0x98/0xc4 kernel/time/timer.c:1519
To fix it, we can introduce a new active flags to make sure the timer will
not restart. |
| In the Linux kernel, the following vulnerability has been resolved:
selinux: enable use of both GFP_KERNEL and GFP_ATOMIC in convert_context()
The following warning was triggered on a hardware environment:
SELinux: Converting 162 SID table entries...
BUG: sleeping function called from invalid context at
__might_sleep+0x60/0x74 0x0
in_atomic(): 1, irqs_disabled(): 128, non_block: 0, pid: 5943, name: tar
CPU: 7 PID: 5943 Comm: tar Tainted: P O 5.10.0 #1
Call trace:
dump_backtrace+0x0/0x1c8
show_stack+0x18/0x28
dump_stack+0xe8/0x15c
___might_sleep+0x168/0x17c
__might_sleep+0x60/0x74
__kmalloc_track_caller+0xa0/0x7dc
kstrdup+0x54/0xac
convert_context+0x48/0x2e4
sidtab_context_to_sid+0x1c4/0x36c
security_context_to_sid_core+0x168/0x238
security_context_to_sid_default+0x14/0x24
inode_doinit_use_xattr+0x164/0x1e4
inode_doinit_with_dentry+0x1c0/0x488
selinux_d_instantiate+0x20/0x34
security_d_instantiate+0x70/0xbc
d_splice_alias+0x4c/0x3c0
ext4_lookup+0x1d8/0x200 [ext4]
__lookup_slow+0x12c/0x1e4
walk_component+0x100/0x200
path_lookupat+0x88/0x118
filename_lookup+0x98/0x130
user_path_at_empty+0x48/0x60
vfs_statx+0x84/0x140
vfs_fstatat+0x20/0x30
__se_sys_newfstatat+0x30/0x74
__arm64_sys_newfstatat+0x1c/0x2c
el0_svc_common.constprop.0+0x100/0x184
do_el0_svc+0x1c/0x2c
el0_svc+0x20/0x34
el0_sync_handler+0x80/0x17c
el0_sync+0x13c/0x140
SELinux: Context system_u:object_r:pssp_rsyslog_log_t:s0:c0 is
not valid (left unmapped).
It was found that within a critical section of spin_lock_irqsave in
sidtab_context_to_sid(), convert_context() (hooked by
sidtab_convert_params.func) might cause the process to sleep via
allocating memory with GFP_KERNEL, which is problematic.
As Ondrej pointed out [1], convert_context()/sidtab_convert_params.func
has another caller sidtab_convert_tree(), which is okay with GFP_KERNEL.
Therefore, fix this problem by adding a gfp_t argument for
convert_context()/sidtab_convert_params.func and pass GFP_KERNEL/_ATOMIC
properly in individual callers.
[PM: wrap long BUG() output lines, tweak subject line] |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7921s: fix slab-out-of-bounds access in sdio host
SDIO may need addtional 511 bytes to align bus operation. If the tailroom
of this skb is not big enough, we would access invalid memory region.
For low level operation, increase skb size to keep valid memory access in
SDIO host.
Error message:
[69.951] BUG: KASAN: slab-out-of-bounds in sg_copy_buffer+0xe9/0x1a0
[69.951] Read of size 64 at addr ffff88811c9cf000 by task kworker/u16:7/451
[69.951] CPU: 4 PID: 451 Comm: kworker/u16:7 Tainted: G W OE 6.1.0-rc5 #1
[69.951] Workqueue: kvub300c vub300_cmndwork_thread [vub300]
[69.951] Call Trace:
[69.951] <TASK>
[69.952] dump_stack_lvl+0x49/0x63
[69.952] print_report+0x171/0x4a8
[69.952] kasan_report+0xb4/0x130
[69.952] kasan_check_range+0x149/0x1e0
[69.952] memcpy+0x24/0x70
[69.952] sg_copy_buffer+0xe9/0x1a0
[69.952] sg_copy_to_buffer+0x12/0x20
[69.952] __command_write_data.isra.0+0x23c/0xbf0 [vub300]
[69.952] vub300_cmndwork_thread+0x17f3/0x58b0 [vub300]
[69.952] process_one_work+0x7ee/0x1320
[69.952] worker_thread+0x53c/0x1240
[69.952] kthread+0x2b8/0x370
[69.952] ret_from_fork+0x1f/0x30
[69.952] </TASK>
[69.952] Allocated by task 854:
[69.952] kasan_save_stack+0x26/0x50
[69.952] kasan_set_track+0x25/0x30
[69.952] kasan_save_alloc_info+0x1b/0x30
[69.952] __kasan_kmalloc+0x87/0xa0
[69.952] __kmalloc_node_track_caller+0x63/0x150
[69.952] kmalloc_reserve+0x31/0xd0
[69.952] __alloc_skb+0xfc/0x2b0
[69.952] __mt76_mcu_msg_alloc+0xbf/0x230 [mt76]
[69.952] mt76_mcu_send_and_get_msg+0xab/0x110 [mt76]
[69.952] __mt76_mcu_send_firmware.cold+0x94/0x15d [mt76]
[69.952] mt76_connac_mcu_send_ram_firmware+0x415/0x54d [mt76_connac_lib]
[69.952] mt76_connac2_load_ram.cold+0x118/0x4bc [mt76_connac_lib]
[69.952] mt7921_run_firmware.cold+0x2e9/0x405 [mt7921_common]
[69.952] mt7921s_mcu_init+0x45/0x80 [mt7921s]
[69.953] mt7921_init_work+0xe1/0x2a0 [mt7921_common]
[69.953] process_one_work+0x7ee/0x1320
[69.953] worker_thread+0x53c/0x1240
[69.953] kthread+0x2b8/0x370
[69.953] ret_from_fork+0x1f/0x30
[69.953] The buggy address belongs to the object at ffff88811c9ce800
which belongs to the cache kmalloc-2k of size 2048
[69.953] The buggy address is located 0 bytes to the right of
2048-byte region [ffff88811c9ce800, ffff88811c9cf000)
[69.953] Memory state around the buggy address:
[69.953] ffff88811c9cef00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[69.953] ffff88811c9cef80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[69.953] >ffff88811c9cf000: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[69.953] ^
[69.953] ffff88811c9cf080: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[69.953] ffff88811c9cf100: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc |
| In the Linux kernel, the following vulnerability has been resolved:
HSI: ssi_protocol: fix potential resource leak in ssip_pn_open()
ssip_pn_open() claims the HSI client's port with hsi_claim_port(). When
hsi_register_port_event() gets some error and returns a negetive value,
the HSI client's port should be released with hsi_release_port().
Fix it by calling hsi_release_port() when hsi_register_port_event() fails. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: Fix use-after-free during usb config switch
In the process of switching USB config from rndis to other config,
if the hardware does not support the ->pullup callback, or the
hardware encounters a low probability fault, both of them may cause
the ->pullup callback to fail, which will then cause a system panic
(use after free).
The gadget drivers sometimes need to be unloaded regardless of the
hardware's behavior.
Analysis as follows:
=======================================================================
(1) write /config/usb_gadget/g1/UDC "none"
gether_disconnect+0x2c/0x1f8
rndis_disable+0x4c/0x74
composite_disconnect+0x74/0xb0
configfs_composite_disconnect+0x60/0x7c
usb_gadget_disconnect+0x70/0x124
usb_gadget_unregister_driver+0xc8/0x1d8
gadget_dev_desc_UDC_store+0xec/0x1e4
(2) rm /config/usb_gadget/g1/configs/b.1/f1
rndis_deregister+0x28/0x54
rndis_free+0x44/0x7c
usb_put_function+0x14/0x1c
config_usb_cfg_unlink+0xc4/0xe0
configfs_unlink+0x124/0x1c8
vfs_unlink+0x114/0x1dc
(3) rmdir /config/usb_gadget/g1/functions/rndis.gs4
panic+0x1fc/0x3d0
do_page_fault+0xa8/0x46c
do_mem_abort+0x3c/0xac
el1_sync_handler+0x40/0x78
0xffffff801138f880
rndis_close+0x28/0x34
eth_stop+0x74/0x110
dev_close_many+0x48/0x194
rollback_registered_many+0x118/0x814
unregister_netdev+0x20/0x30
gether_cleanup+0x1c/0x38
rndis_attr_release+0xc/0x14
kref_put+0x74/0xb8
configfs_rmdir+0x314/0x374
If gadget->ops->pullup() return an error, function rndis_close() will be
called, then it will causes a use-after-free problem.
======================================================================= |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath9k: avoid uninit memory read in ath9k_htc_rx_msg()
syzbot is reporting uninit value at ath9k_htc_rx_msg() [1], for
ioctl(USB_RAW_IOCTL_EP_WRITE) can call ath9k_hif_usb_rx_stream() with
pkt_len = 0 but ath9k_hif_usb_rx_stream() uses
__dev_alloc_skb(pkt_len + 32, GFP_ATOMIC) based on an assumption that
pkt_len is valid. As a result, ath9k_hif_usb_rx_stream() allocates skb
with uninitialized memory and ath9k_htc_rx_msg() is reading from
uninitialized memory.
Since bytes accessed by ath9k_htc_rx_msg() is not known until
ath9k_htc_rx_msg() is called, it would be difficult to check minimal valid
pkt_len at "if (pkt_len > 2 * MAX_RX_BUF_SIZE) {" line in
ath9k_hif_usb_rx_stream().
We have two choices. One is to workaround by adding __GFP_ZERO so that
ath9k_htc_rx_msg() sees 0 if pkt_len is invalid. The other is to let
ath9k_htc_rx_msg() validate pkt_len before accessing. This patch chose
the latter.
Note that I'm not sure threshold condition is correct, for I can't find
details on possible packet length used by this protocol. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: set tx_tstamps when creating new Tx rings via ethtool
When the user changes the number of queues via ethtool, the driver
allocates new rings. This allocation did not initialize tx_tstamps. This
results in the tx_tstamps field being zero (due to kcalloc allocation), and
would result in a NULL pointer dereference when attempting a transmit
timestamp on the new ring. |