Search Results (313571 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-53600 2 Naver, Navercorp 2 Whale Browser, Whale 2025-10-01 7.5 High
Whale browser before 4.32.315.22 allow an attacker to bypass the Same-Origin Policy in a dual-tab environment.
CVE-2022-48715 1 Linux 1 Linux Kernel 2025-10-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: bnx2fc: Make bnx2fc_recv_frame() mp safe Running tests with a debug kernel shows that bnx2fc_recv_frame() is modifying the per_cpu lport stats counters in a non-mpsafe way. Just boot a debug kernel and run the bnx2fc driver with the hardware enabled. [ 1391.699147] BUG: using smp_processor_id() in preemptible [00000000] code: bnx2fc_ [ 1391.699160] caller is bnx2fc_recv_frame+0xbf9/0x1760 [bnx2fc] [ 1391.699174] CPU: 2 PID: 4355 Comm: bnx2fc_l2_threa Kdump: loaded Tainted: G B [ 1391.699180] Hardware name: HP ProLiant DL120 G7, BIOS J01 07/01/2013 [ 1391.699183] Call Trace: [ 1391.699188] dump_stack_lvl+0x57/0x7d [ 1391.699198] check_preemption_disabled+0xc8/0xd0 [ 1391.699205] bnx2fc_recv_frame+0xbf9/0x1760 [bnx2fc] [ 1391.699215] ? do_raw_spin_trylock+0xb5/0x180 [ 1391.699221] ? bnx2fc_npiv_create_vports.isra.0+0x4e0/0x4e0 [bnx2fc] [ 1391.699229] ? bnx2fc_l2_rcv_thread+0xb7/0x3a0 [bnx2fc] [ 1391.699240] bnx2fc_l2_rcv_thread+0x1af/0x3a0 [bnx2fc] [ 1391.699250] ? bnx2fc_ulp_init+0xc0/0xc0 [bnx2fc] [ 1391.699258] kthread+0x364/0x420 [ 1391.699263] ? _raw_spin_unlock_irq+0x24/0x50 [ 1391.699268] ? set_kthread_struct+0x100/0x100 [ 1391.699273] ret_from_fork+0x22/0x30 Restore the old get_cpu/put_cpu code with some modifications to reduce the size of the critical section.
CVE-2021-47588 1 Linux 1 Linux Kernel 2025-10-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: sit: do not call ipip6_dev_free() from sit_init_net() ipip6_dev_free is sit dev->priv_destructor, already called by register_netdevice() if something goes wrong. Alternative would be to make ipip6_dev_free() robust against multiple invocations, but other drivers do not implement this strategy. syzbot reported: dst_release underflow WARNING: CPU: 0 PID: 5059 at net/core/dst.c:173 dst_release+0xd8/0xe0 net/core/dst.c:173 Modules linked in: CPU: 1 PID: 5059 Comm: syz-executor.4 Not tainted 5.16.0-rc5-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:dst_release+0xd8/0xe0 net/core/dst.c:173 Code: 4c 89 f2 89 d9 31 c0 5b 41 5e 5d e9 da d5 44 f9 e8 1d 90 5f f9 c6 05 87 48 c6 05 01 48 c7 c7 80 44 99 8b 31 c0 e8 e8 67 29 f9 <0f> 0b eb 85 0f 1f 40 00 53 48 89 fb e8 f7 8f 5f f9 48 83 c3 a8 48 RSP: 0018:ffffc9000aa5faa0 EFLAGS: 00010246 RAX: d6894a925dd15a00 RBX: 00000000ffffffff RCX: 0000000000040000 RDX: ffffc90005e19000 RSI: 000000000003ffff RDI: 0000000000040000 RBP: 0000000000000000 R08: ffffffff816a1f42 R09: ffffed1017344f2c R10: ffffed1017344f2c R11: 0000000000000000 R12: 0000607f462b1358 R13: 1ffffffff1bfd305 R14: ffffe8ffffcb1358 R15: dffffc0000000000 FS: 00007f66c71a2700(0000) GS:ffff8880b9a00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f88aaed5058 CR3: 0000000023e0f000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> dst_cache_destroy+0x107/0x1e0 net/core/dst_cache.c:160 ipip6_dev_free net/ipv6/sit.c:1414 [inline] sit_init_net+0x229/0x550 net/ipv6/sit.c:1936 ops_init+0x313/0x430 net/core/net_namespace.c:140 setup_net+0x35b/0x9d0 net/core/net_namespace.c:326 copy_net_ns+0x359/0x5c0 net/core/net_namespace.c:470 create_new_namespaces+0x4ce/0xa00 kernel/nsproxy.c:110 unshare_nsproxy_namespaces+0x11e/0x180 kernel/nsproxy.c:226 ksys_unshare+0x57d/0xb50 kernel/fork.c:3075 __do_sys_unshare kernel/fork.c:3146 [inline] __se_sys_unshare kernel/fork.c:3144 [inline] __x64_sys_unshare+0x34/0x40 kernel/fork.c:3144 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x44/0xd0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f66c882ce99 Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 bc ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f66c71a2168 EFLAGS: 00000246 ORIG_RAX: 0000000000000110 RAX: ffffffffffffffda RBX: 00007f66c893ff60 RCX: 00007f66c882ce99 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000048040200 RBP: 00007f66c8886ff1 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 00007fff6634832f R14: 00007f66c71a2300 R15: 0000000000022000 </TASK>
CVE-2022-48727 1 Linux 1 Linux Kernel 2025-10-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: KVM: arm64: Avoid consuming a stale esr value when SError occur When any exception other than an IRQ occurs, the CPU updates the ESR_EL2 register with the exception syndrome. An SError may also become pending, and will be synchronised by KVM. KVM notes the exception type, and whether an SError was synchronised in exit_code. When an exception other than an IRQ occurs, fixup_guest_exit() updates vcpu->arch.fault.esr_el2 from the hardware register. When an SError was synchronised, the vcpu esr value is used to determine if the exception was due to an HVC. If so, ELR_EL2 is moved back one instruction. This is so that KVM can process the SError first, and re-execute the HVC if the guest survives the SError. But if an IRQ synchronises an SError, the vcpu's esr value is stale. If the previous non-IRQ exception was an HVC, KVM will corrupt ELR_EL2, causing an unrelated guest instruction to be executed twice. Check ARM_EXCEPTION_CODE() before messing with ELR_EL2, IRQs don't update this register so don't need to check.
CVE-2022-48721 1 Linux 1 Linux Kernel 2025-10-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/smc: Forward wakeup to smc socket waitqueue after fallback When we replace TCP with SMC and a fallback occurs, there may be some socket waitqueue entries remaining in smc socket->wq, such as eppoll_entries inserted by userspace applications. After the fallback, data flows over TCP/IP and only clcsocket->wq will be woken up. Applications can't be notified by the entries which were inserted in smc socket->wq before fallback. So we need a mechanism to wake up smc socket->wq at the same time if some entries remaining in it. The current workaround is to transfer the entries from smc socket->wq to clcsock->wq during the fallback. But this may cause a crash like this: general protection fault, probably for non-canonical address 0xdead000000000100: 0000 [#1] PREEMPT SMP PTI CPU: 3 PID: 0 Comm: swapper/3 Kdump: loaded Tainted: G E 5.16.0+ #107 RIP: 0010:__wake_up_common+0x65/0x170 Call Trace: <IRQ> __wake_up_common_lock+0x7a/0xc0 sock_def_readable+0x3c/0x70 tcp_data_queue+0x4a7/0xc40 tcp_rcv_established+0x32f/0x660 ? sk_filter_trim_cap+0xcb/0x2e0 tcp_v4_do_rcv+0x10b/0x260 tcp_v4_rcv+0xd2a/0xde0 ip_protocol_deliver_rcu+0x3b/0x1d0 ip_local_deliver_finish+0x54/0x60 ip_local_deliver+0x6a/0x110 ? tcp_v4_early_demux+0xa2/0x140 ? tcp_v4_early_demux+0x10d/0x140 ip_sublist_rcv_finish+0x49/0x60 ip_sublist_rcv+0x19d/0x230 ip_list_rcv+0x13e/0x170 __netif_receive_skb_list_core+0x1c2/0x240 netif_receive_skb_list_internal+0x1e6/0x320 napi_complete_done+0x11d/0x190 mlx5e_napi_poll+0x163/0x6b0 [mlx5_core] __napi_poll+0x3c/0x1b0 net_rx_action+0x27c/0x300 __do_softirq+0x114/0x2d2 irq_exit_rcu+0xb4/0xe0 common_interrupt+0xba/0xe0 </IRQ> <TASK> The crash is caused by privately transferring waitqueue entries from smc socket->wq to clcsock->wq. The owners of these entries, such as epoll, have no idea that the entries have been transferred to a different socket wait queue and still use original waitqueue spinlock (smc socket->wq.wait.lock) to make the entries operation exclusive, but it doesn't work. The operations to the entries, such as removing from the waitqueue (now is clcsock->wq after fallback), may cause a crash when clcsock waitqueue is being iterated over at the moment. This patch tries to fix this by no longer transferring wait queue entries privately, but introducing own implementations of clcsock's callback functions in fallback situation. The callback functions will forward the wakeup to smc socket->wq if clcsock->wq is actually woken up and smc socket->wq has remaining entries.
CVE-2022-48720 1 Linux 1 Linux Kernel 2025-10-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: macsec: Fix offload support for NETDEV_UNREGISTER event Current macsec netdev notify handler handles NETDEV_UNREGISTER event by releasing relevant SW resources only, this causes resources leak in case of macsec HW offload, as the underlay driver was not notified to clean it's macsec offload resources. Fix by calling the underlay driver to clean it's relevant resources by moving offload handling from macsec_dellink() to macsec_common_dellink() when handling NETDEV_UNREGISTER event.
CVE-2025-7060 1 Monitorr 1 Monitorr 2025-10-01 4.1 Medium
A vulnerability was found in Monitorr up to 1.7.6m. It has been classified as problematic. This affects an unknown part of the file assets/config/_installation/mkdbajax.php of the component Installer. The manipulation of the argument datadir leads to improper input validation. It is possible to initiate the attack remotely. The complexity of an attack is rather high. The exploitability is told to be difficult. The exploit has been disclosed to the public and may be used. The vendor was contacted early about this disclosure but did not respond in any way.
CVE-2025-53489 2 Jackphoenix, Mediawiki 2 Googledocs4mw, Mediawiki 2025-10-01 5.6 Medium
Improper Neutralization of Input During Web Page Generation (XSS or 'Cross-site Scripting') vulnerability in Wikimedia Foundation Mediawiki - GoogleDocs4MW Extension allows Cross-Site Scripting (XSS).This issue affects Mediawiki - GoogleDocs4MW Extension: from 1.42.X before 1.42.7, from 1.43.X before 1.43.2.
CVE-2025-53490 2 Jly, Mediawiki 2 Campaignevents, Mediawiki 2025-10-01 5.6 Medium
Improper Neutralization of Input During Web Page Generation (XSS or 'Cross-site Scripting') vulnerability in Wikimedia Foundation Mediawiki - CampaignEvents Extension allows Cross-Site Scripting (XSS).This issue affects Mediawiki - CampaignEvents Extension: from 1.43.X before 1.43.2.
CVE-2023-6918 3 Fedoraproject, Libssh, Redhat 3 Fedora, Libssh, Enterprise Linux 2025-10-01 3.7 Low
A flaw was found in the libssh implements abstract layer for message digest (MD) operations implemented by different supported crypto backends. The return values from these were not properly checked, which could cause low-memory situations failures, NULL dereferences, crashes, or usage of the uninitialized memory as an input for the KDF. In this case, non-matching keys will result in decryption/integrity failures, terminating the connection.
CVE-2024-21544 1 Spatie 1 Browsershot 2025-10-01 8.6 High
Versions of the package spatie/browsershot before 5.0.1 are vulnerable to Improper Input Validation due to improper URL validation in the setUrl method. An attacker can exploit this vulnerability by using leading whitespace (%20) before the file:// protocol, resulting in Local File Inclusion, which allows the attacker to read sensitive files on the server.
CVE-2024-21549 1 Spatie 1 Browsershot 2025-10-01 8.6 High
Versions of the package spatie/browsershot before 5.0.3 are vulnerable to Improper Input Validation due to improper URL validation through the setUrl method. An attacker can exploit this vulnerability by utilizing view-source:file://, which allows for arbitrary file reading on a local file. **Note:** This is a bypass of the fix for [CVE-2024-21544](https://security.snyk.io/vuln/SNYK-PHP-SPATIEBROWSERSHOT-8496745).
CVE-2023-46988 1 Onlyoffice 1 Document Server 2025-10-01 6.7 Medium
Path Traversal vulnerability in ONLYOFFICE Document Server before v8.0.1 allows a remote attacker to copy arbitrary files by manipulating the fileExt parameter in the /example/editor endpoint, leading to unauthorized access to sensitive files and potential Denial of Service (DoS).
CVE-2025-58674 2 Automattic, Wordpress 2 Wordpress, Wordpress 2025-10-01 5.9 Medium
Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability in WordPress allows Stored XSS. WordPress core security team is aware of the issue and working on a fix. This is low severity vulnerability that requires an attacker to have Author or higher user privileges to execute the attack vector.This issue affects WordPress: from 6.8 through 6.8.2, from 6.7 through 6.7.3, from 6.6 through 6.6.3, from 6.5 through 6.5.6, from 6.4 through 6.4.6, from 6.3 through 6.3.6, from 6.2 through 6.2.7, from 6.1 through 6.1.8, from 6.0 through 6.0.10, from 5.9 through 5.9.11, from 5.8 through 5.8.11, from 5.7 through 5.7.13, from 5.6 through 5.6.15, from 5.5 through 5.5.16, from 5.4 through 5.4.17, from 5.3 through 5.3.19, from 5.2 through 5.2.22, from 5.1 through 5.1.20, from 5.0 through 5.0.23, from 4.9 through 4.9.27, from 4.8 through 4.8.26, from 4.7 through 4.7.30.
CVE-2025-58246 2 Automattic, Wordpress 2 Wordpress, Wordpress 2025-10-01 4.3 Medium
Insertion of Sensitive Information Into Sent Data vulnerability in WordPress allows Retrieve Embedded Sensitive Data. The WordPress Core security team is aware of the issue and is already working on a fix. This is a low-severity vulnerability. Contributor-level privileges required in order to exploit it. This issue affects WordPress: from 6.8 through 6.8.2, from 6.7 through 6.7.3, from 6.6 through 6.6.3, from 6.5 through 6.5.6, from 6.4 through 6.4.6, from 6.3 through 6.3.6, from 6.2 through 6.2.7, from 6.1 through 6.1.8, from 6.0 through 6.0.10, from 5.9 through 5.9.11, from 5.8 through 5.8.11, from 5.7 through 5.7.13, from 5.6 through 5.6.15, from 5.5 through 5.5.16, from 5.4 through 5.4.17, from 5.3 through 5.3.19, from 5.2 through 5.2.22, from 5.1 through 5.1.20, from 5.0 through 5.0.23, from 4.9 through 4.9.27, from 4.8 through 4.8.26, from 4.7 through 4.7.30.
CVE-2023-40551 2 Fedoraproject, Redhat 7 Fedora, Enterprise Linux, Rhel Aus and 4 more 2025-10-01 5.1 Medium
A flaw was found in the MZ binary format in Shim. An out-of-bounds read may occur, leading to a crash or possible exposure of sensitive data during the system's boot phase.
CVE-2023-40550 2 Fedoraproject, Redhat 7 Fedora, Enterprise Linux, Rhel Aus and 4 more 2025-10-01 5.5 Medium
An out-of-bounds read flaw was found in Shim when it tried to validate the SBAT information. This issue may expose sensitive data during the system's boot phase.
CVE-2023-40549 2 Fedoraproject, Redhat 7 Fedora, Enterprise Linux, Rhel Aus and 4 more 2025-10-01 6.2 Medium
An out-of-bounds read flaw was found in Shim due to the lack of proper boundary verification during the load of a PE binary. This flaw allows an attacker to load a crafted PE binary, triggering the issue and crashing Shim, resulting in a denial of service.
CVE-2023-40546 2 Fedoraproject, Redhat 7 Fedora, Enterprise Linux, Rhel Aus and 4 more 2025-10-01 6.2 Medium
A flaw was found in Shim when an error happened while creating a new ESL variable. If Shim fails to create the new variable, it tries to print an error message to the user; however, the number of parameters used by the logging function doesn't match the format string used by it, leading to a crash under certain circumstances.
CVE-2024-9050 1 Redhat 6 Enterprise Linux, Rhel Aus, Rhel E4s and 3 more 2025-10-01 7.8 High
A flaw was found in the libreswan client plugin for NetworkManager (NetkworkManager-libreswan), where it fails to properly sanitize the VPN configuration from the local unprivileged user. In this configuration, composed by a key-value format, the plugin fails to escape special characters, leading the application to interpret values as keys. One of the most critical parameters that could be abused by a malicious user is the `leftupdown`key. This key takes an executable command as a value and is used to specify what executes as a callback in NetworkManager-libreswan to retrieve configuration settings back to NetworkManager. As NetworkManager uses Polkit to allow an unprivileged user to control the system's network configuration, a malicious actor could achieve local privilege escalation and potential code execution as root in the targeted machine by creating a malicious configuration.