| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Fiber is an express inspired web framework written in Go. A Cross-Site Request Forgery (CSRF) vulnerability has been identified in the application, which allows an attacker to obtain tokens and forge malicious requests on behalf of a user. This can lead to unauthorized actions being taken on the user's behalf, potentially compromising the security and integrity of the application. The vulnerability is caused by improper validation and enforcement of CSRF tokens within the application. This vulnerability has been addressed in version 2.50.0 and users are advised to upgrade. Users should take additional security measures like captchas or Two-Factor Authentication (2FA) and set Session cookies with SameSite=Lax or SameSite=Secure, and the Secure and HttpOnly attributes. |
| Fiber is an express inspired web framework written in Go. A Cross-Site Request Forgery (CSRF) vulnerability has been identified in the application, which allows an attacker to inject arbitrary values and forge malicious requests on behalf of a user. This vulnerability can allow an attacker to inject arbitrary values without any authentication, or perform various malicious actions on behalf of an authenticated user, potentially compromising the security and integrity of the application. The vulnerability is caused by improper validation and enforcement of CSRF tokens within the application. This issue has been addressed in version 2.50.0 and users are advised to upgrade. Users should take additional security measures like captchas or Two-Factor Authentication (2FA) and set Session cookies with SameSite=Lax or SameSite=Secure, and the Secure and HttpOnly attributes as defense in depth measures. There are no known workarounds for this vulnerability. |
| Garden provides automation for Kubernetes development and testing. Prior tov ersions 0.13.17 and 0.12.65, Garden has a dependency on the cryo library, which is vulnerable to code injection due to an insecure implementation of deserialization. Garden stores serialized objects using cryo in the Kubernetes `ConfigMap` resources prefixed with `test-result` and `run-result` to cache Garden test and run results. These `ConfigMaps` are stored either in the `garden-system` namespace or the configured user namespace. When a user invokes the command `garden test` or `garden run` objects stored in the `ConfigMap` are retrieved and deserialized. This can be used by an attacker with access to the Kubernetes cluster to store malicious objects in the `ConfigMap`, which can trigger a remote code execution on the users machine when cryo deserializes the object. In order to exploit this vulnerability, an attacker must have access to the Kubernetes cluster used to deploy garden remote environments. Further, a user must actively invoke either a `garden test` or `garden run` which has previously cached results. The issue has been patched in Garden versions `0.13.17` (Bonsai) and `0.12.65` (Acorn). Only Garden versions prior to these are vulnerable. No known workarounds are available. |
| Adobe ColdFusion versions 2023.5 (and earlier) and 2021.11 (and earlier) are affected by an Deserialization of Untrusted Data vulnerability that could result in Arbitrary code execution. Exploitation of this issue does not require user interaction. |
| Adobe ColdFusion versions 2023.5 (and earlier) and 2021.11 (and earlier) are affected by an Deserialization of Untrusted Data vulnerability that could result in Arbitrary code execution. Exploitation of this issue does not require user interaction. |
| Adobe ColdFusion versions 2023.5 (and earlier) and 2021.11 (and earlier) are affected by an Deserialization of Untrusted Data vulnerability that could result in Arbitrary code execution. Exploitation of this issue does not require user interaction. |
|
RVTools, Version 3.9.2 and above, contain a sensitive data exposure vulnerability in the password encryption utility (RVToolsPasswordEncryption.exe) and main application (RVTools.exe). A remote unauthenticated attacker with access to stored encrypted passwords from a users' system could potentially exploit this vulnerability, leading to the disclosure of encrypted passwords in clear text. This vulnerability is caused by an incomplete fix for CVE-2020-27688.
|
|
Dell DM5500 5.14.0.0, contain a Plain-text Password Storage Vulnerability in the appliance. A local attacker with privileges could potentially exploit this vulnerability, leading to the disclosure of certain service credentials. The attacker may be able to use the exposed credentials to access the vulnerable application with privileges of the compromised account.
|
| Consensys gnark-crypto through 0.11.2 allows Signature Malleability. This occurs because deserialisation of EdDSA and ECDSA signatures does not ensure that the data is in a certain interval. |
| Sensitive information disclosure due to insufficient token field masking. The following products are affected: Acronis Cyber Protect 15 (Linux, Windows) before build 35979. |
| Sensitive information leak through log files. The following products are affected: Acronis Cyber Protect 15 (Linux, Windows) before build 35979. |
| Presto Changeo testsitecreator up to 1.1.1 was discovered to contain a deserialization vulnerability via the component delete_excluded_folder.php. |
| Incorrect access control in writercms v1.1.0 allows attackers to directly obtain backend account passwords via unspecified vectors. |
| Eaton easySoft software is used to program easy controllers and displays for configuring, programming and defining parameters for all the intelligent relays. This software has a password protection functionality to secure the project file from unauthorized access. This password was being stored insecurely and could be retrieved by skilled adversaries. |
|
Vault Key Sealed With SHA1 PCRs
The measured boot solution implemented in EVE OS leans on a PCR locking mechanism.
Different parts of the system update different PCR values in the TPM, resulting in a unique
value for each PCR entry.
These PCRs are then used in order to seal/unseal a key from the TPM which is used to
encrypt/decrypt the “vault” directory.
This “vault” directory is the most sensitive point in the system and as such, its content should
be protected.
This mechanism is noted in Zededa’s documentation as the “measured boot” mechanism,
designed to protect said “vault”.
The code that’s responsible for generating and fetching the key from the TPM assumes that
SHA256 PCRs are used in order to seal/unseal the key, and as such their presence is being
checked.
The issue here is that the key is not sealed using SHA256 PCRs, but using SHA1 PCRs.
This leads to several issues:
• Machines that have their SHA256 PCRs enabled but SHA1 PCRs disabled, as well
as not sealing their keys at all, meaning the “vault” is not protected from an attacker.
• SHA1 is considered insecure and reduces the complexity level required to unseal the
key in machines which have their SHA1 PCRs enabled.
An attacker can very easily retrieve the contents of the “vault”, which will effectively render
the “measured boot” mechanism meaningless.
|
|
When sealing/unsealing the “vault” key, a list of PCRs is used, which defines which PCRs
are used.
In a previous project, CYMOTIVE found that the configuration is not protected by the secure
boot, and in response Zededa implemented measurements on the config partition that was
mapped to PCR 13.
In that process, PCR 13 was added to the list of PCRs that seal/unseal the key.
In commit “56e589749c6ff58ded862d39535d43253b249acf”, the config partition
measurement moved from PCR 13 to PCR 14, but PCR 14 was not added to the list of
PCRs that seal/unseal the key.
This change makes the measurement of PCR 14 effectively redundant as it would not affect
the sealing/unsealing of the key.
An attacker could modify the config partition without triggering the measured boot, this could
result in the attacker gaining full control over the device with full access to the contents of the
encrypted “vault”
|
|
On boot, the Pillar eve container checks for the existence and content of
“/config/GlobalConfig/global.json”.
If the file exists, it overrides the existing configuration on the device on boot.
This allows an attacker to change the system’s configuration, which also includes some
debug functions.
This could be used to unlock the ssh with custom “authorized_keys” via the
“debug.enable.ssh” key, similar to the “authorized_keys” finding that was noted before.
Other usages include unlocking the usb to enable the keyboard via the “debug.enable.usb”
key, allowing VNC access via the “app.allow.vnc” key, and more.
An attacker could easily enable these debug functionalities without triggering the “measured
boot” mechanism implemented by EVE OS, and without marking the device as “UUD”
(“Unknown Update Detected”).
This is because the “/config” partition is not protected by “measured boot”, it is mutable and it
is not encrypted in any way.
An attacker can gain full control over the device without changing the PCR values, thereby not
triggering the “measured boot” mechanism, and having full access to the vault.
Note:
This issue was partially fixed in these commits (after disclosure to Zededa), where the config
partition measurement was added to PCR13:
• aa3501d6c57206ced222c33aea15a9169d629141
• 5fef4d92e75838cc78010edaed5247dfbdae1889.
This issue was made viable in version 9.0.0 when the calculation was moved to PCR14 but it was not included in the measured boot. |
|
On boot, the Pillar eve container checks for the existence and content of
“/config/authorized_keys”.
If the file is present, and contains a supported public key, the container will go on to open
port 22 and enable sshd with the given keys as the authorized keys for root login.
An attacker could easily add their own keys and gain full control over the system without
triggering the “measured boot” mechanism implemented by EVE OS, and without marking
the device as “UUD” (“Unknown Update Detected”).
This is because the “/config” partition is not protected by “measured boot”, it is mutable, and
it is not encrypted in any way.
An attacker can gain full control over the device without changing the PCR values, thus not
triggering the “measured boot” mechanism, and having full access to the vault.
Note:
This issue was partially fixed in these commits (after disclosure to Zededa), where the config
partition measurement was added to PCR13:
• aa3501d6c57206ced222c33aea15a9169d629141
• 5fef4d92e75838cc78010edaed5247dfbdae1889.
This issue was made viable in version 9.0.0 when the calculation was moved to PCR14 but it was not included in the measured boot. |
| PCR14 is not in the list of PCRs that seal/unseal the “vault” key, but
due to the change that was implemented in commit
“7638364bc0acf8b5c481b5ce5fea11ad44ad7fd4”, fixing this issue alone would not solve the
problem of the config partition not being measured correctly.
Also, the “vault” key is sealed/unsealed with SHA1 PCRs instead of
SHA256.
This issue was somewhat mitigated due to all of the PCR extend functions
updating both the values of SHA256 and SHA1 for a given PCR ID.
However, due to the change that was implemented in commit
“7638364bc0acf8b5c481b5ce5fea11ad44ad7fd4”, this is no longer the case for PCR14, as
the code in “measurefs.go” explicitly updates only the SHA256 instance of PCR14, which
means that even if PCR14 were to be added to the list of PCRs sealing/unsealing the “vault”
key, changes to the config partition would still not be measured.
An attacker could modify the config partition without triggering the measured boot, this could
result in the attacker gaining full control over the device with full access to the contents of the
encrypted “vault”
|
| Link following in Zoom Rooms for macOS before version 5.16.0 may allow an authenticated user to conduct an escalation of privilege via local access.
|