Search

Search Results (327785 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2026-0694 1 Wordpress 1 Wordpress 2026-01-14 6.4 Medium
The SearchWiz plugin for WordPress is vulnerable to Stored Cross-Site Scripting via post titles in search results in all versions up to, and including, 1.0.0. This is due to the plugin using `esc_attr()` instead of `esc_html()` when outputting post titles in search results. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in post titles that will execute whenever a user performs a search and views the search results page.
CVE-2026-0739 2026-01-14 4.4 Medium
The WMF Mobile Redirector plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin settings in all versions up to, and including, 1.2 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with Administrator-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page.
CVE-2026-0741 2026-01-14 4.4 Medium
The Electric Studio Download Counter plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin settings in all versions up to, and including, 2.4 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with Administrator-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page.
CVE-2026-0812 2026-01-14 4.4 Medium
The LinkedIn SC plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'linkedin_sc_date_format', 'linkedin_sc_api_key', and 'linkedin_sc_secret_key' parameters in all versions up to, and including, 1.1.9 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with administrator-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses the injected page.
CVE-2025-68961 1 Huawei 1 Harmonyos 2026-01-14 5.1 Medium
Multi-thread race condition vulnerability in the camera framework module. Impact: Successful exploitation of this vulnerability may affect availability.
CVE-2026-0717 1 Wordpress 1 Wordpress 2026-01-14 5.3 Medium
The LottieFiles – Lottie block for Gutenberg plugin for WordPress is vulnerable to Sensitive Information Exposure in all versions up to, and including, 3.0.0 via the `/wp-json/lottiefiles/v1/settings/` REST API endpoint. This makes it possible for unauthenticated attackers to retrieve the site owner's LottieFiles.com account credentials including their API access token and email address when the 'Share LottieFiles account with other WordPress users' option is enabled.
CVE-2026-22211 2026-01-14 N/A
TinyOS versions up to and including 2.1.2 contain a global buffer overflow vulnerability in the printfUART formatted output implementation used within the ZigBee / IEEE 802.15.4 networking stack. The implementation formats output into a fixed-size global buffer and concatenates strings for %s format specifiers using strcat() without verifying remaining buffer capacity. When printfUART is invoked with a caller-controlled string longer than the available space, the unbounded sprintf/strcat sequence writes past the end of debugbuf, resulting in global memory corruption. This can cause denial of service, unintended behavior, or information disclosure via corrupted adjacent global state or UART output.
CVE-2026-22236 2026-01-14 N/A
The vulnerability exists in BLUVOYIX due to improper authentication in the BLUVOYIX backend APIs. An unauthenticated remote attacker could exploit this vulnerability by sending specially crafted HTTP requests to the vulnerable APIs. Successful exploitation of this vulnerability could allow the attacker to gain full access to customers' data and completely compromise the targeted platform.
CVE-2026-22237 2026-01-14 N/A
The vulnerability exists in BLUVOYIX due to the exposure of sensitive internal API documentation. An unauthenticated remote attacker could exploit this vulnerability by sending specially crafted HTTP requests to the APIs exposed by the documentation. Successful exploitation of this vulnerability could allow the attacker to cause damage to the targeted platform by abusing internal functionality.
CVE-2026-22239 2026-01-14 N/A
The vulnerability exists in BLUVOYIX due to design flaws in the email sending API. An unauthenticated remote attacker could exploit this vulnerability by sending specially crafted HTTP requests to the vulnerable email sending API. Successful exploitation of this vulnerability could allow the attacker to send unsolicited emails to anyone on behalf of the company.
CVE-2026-22240 2026-01-14 N/A
The vulnerability exists in BLUVOYIX due to an improper password storage implementation and subsequent exposure via unauthenticated APIs. An unauthenticated remote attacker could exploit this vulnerability by sending specially crafted HTTP requests to the vulnerable users API to retrieve the plaintext passwords of all user users. Successful exploitation of this vulnerability could allow the attacker to gain full access to customers' data and completely compromise the targeted platform by logging in using an exposed admin email address and password.
CVE-2026-22686 1 Agentfront 1 Enclave 2026-01-14 10 Critical
Enclave is a secure JavaScript sandbox designed for safe AI agent code execution. Prior to 2.7.0, there is a critical sandbox escape vulnerability in enclave-vm that allows untrusted, sandboxed JavaScript code to execute arbitrary code in the host Node.js runtime. When a tool invocation fails, enclave-vm exposes a host-side Error object to sandboxed code. This Error object retains its host realm prototype chain, which can be traversed to reach the host Function constructor. An attacker can intentionally trigger a host error, then climb the prototype chain. Using the host Function constructor, arbitrary JavaScript can be compiled and executed in the host context, fully bypassing the sandbox and granting access to sensitive resources such as process.env, filesystem, and network. This breaks enclave-vm’s core security guarantee of isolating untrusted code. This vulnerability is fixed in 2.7.0.
CVE-2026-22718 1 Spring 1 Cli Vscode Extension 2026-01-14 6.8 Medium
The VSCode extension for Spring CLI are vulnerable to command injection, resulting in command execution on the users machine.
CVE-2025-68959 2026-01-14 6.2 Medium
Permission verification bypass vulnerability in the media library module. Impact: Successful exploitation of this vulnerability may affect service confidentiality.
CVE-2025-13175 2026-01-14 N/A
Y Soft SafeQ 6 renders the Workflow Connector password field in a way that allows an administrator with UI access to reveal the value using browser developer/inspection tools. The affected customers are only those with a password-protected scan workflow connector. This issue affects Y Soft SafeQ 6 in versions before MU106.
CVE-2025-56226 2026-01-14 5.3 Medium
Libsndfile <=1.2.2 contains a memory leak vulnerability in the mpeg_l3_encoder_init() function within the mpeg_l3_encode.c file.
CVE-2025-68962 1 Huawei 1 Harmonyos 2026-01-14 5.1 Medium
Multi-thread race condition vulnerability in the camera framework module. Impact: Successful exploitation of this vulnerability may affect availability.
CVE-2025-68968 1 Huawei 1 Harmonyos 2026-01-14 7.8 High
Double free vulnerability in the multi-mode input module. Impact: Successful exploitation of this vulnerability may affect the input function.
CVE-2025-71104 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: KVM: x86: Fix VM hard lockup after prolonged inactivity with periodic HV timer When advancing the target expiration for the guest's APIC timer in periodic mode, set the expiration to "now" if the target expiration is in the past (similar to what is done in update_target_expiration()). Blindly adding the period to the previous target expiration can result in KVM generating a practically unbounded number of hrtimer IRQs due to programming an expired timer over and over. In extreme scenarios, e.g. if userspace pauses/suspends a VM for an extended duration, this can even cause hard lockups in the host. Currently, the bug only affects Intel CPUs when using the hypervisor timer (HV timer), a.k.a. the VMX preemption timer. Unlike the software timer, a.k.a. hrtimer, which KVM keeps running even on exits to userspace, the HV timer only runs while the guest is active. As a result, if the vCPU does not run for an extended duration, there will be a huge gap between the target expiration and the current time the vCPU resumes running. Because the target expiration is incremented by only one period on each timer expiration, this leads to a series of timer expirations occurring rapidly after the vCPU/VM resumes. More critically, when the vCPU first triggers a periodic HV timer expiration after resuming, advancing the expiration by only one period will result in a target expiration in the past. As a result, the delta may be calculated as a negative value. When the delta is converted into an absolute value (tscdeadline is an unsigned u64), the resulting value can overflow what the HV timer is capable of programming. I.e. the large value will exceed the VMX Preemption Timer's maximum bit width of cpu_preemption_timer_multi + 32, and thus cause KVM to switch from the HV timer to the software timer (hrtimers). After switching to the software timer, periodic timer expiration callbacks may be executed consecutively within a single clock interrupt handler, because hrtimers honors KVM's request for an expiration in the past and immediately re-invokes KVM's callback after reprogramming. And because the interrupt handler runs with IRQs disabled, restarting KVM's hrtimer over and over until the target expiration is advanced to "now" can result in a hard lockup. E.g. the following hard lockup was triggered in the host when running a Windows VM (only relevant because it used the APIC timer in periodic mode) after resuming the VM from a long suspend (in the host). NMI watchdog: Watchdog detected hard LOCKUP on cpu 45 ... RIP: 0010:advance_periodic_target_expiration+0x4d/0x80 [kvm] ... RSP: 0018:ff4f88f5d98d8ef0 EFLAGS: 00000046 RAX: fff0103f91be678e RBX: fff0103f91be678e RCX: 00843a7d9e127bcc RDX: 0000000000000002 RSI: 0052ca4003697505 RDI: ff440d5bfbdbd500 RBP: ff440d5956f99200 R08: ff2ff2a42deb6a84 R09: 000000000002a6c0 R10: 0122d794016332b3 R11: 0000000000000000 R12: ff440db1af39cfc0 R13: ff440db1af39cfc0 R14: ffffffffc0d4a560 R15: ff440db1af39d0f8 FS: 00007f04a6ffd700(0000) GS:ff440db1af380000(0000) knlGS:000000e38a3b8000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000d5651feff8 CR3: 000000684e038002 CR4: 0000000000773ee0 PKRU: 55555554 Call Trace: <IRQ> apic_timer_fn+0x31/0x50 [kvm] __hrtimer_run_queues+0x100/0x280 hrtimer_interrupt+0x100/0x210 ? ttwu_do_wakeup+0x19/0x160 smp_apic_timer_interrupt+0x6a/0x130 apic_timer_interrupt+0xf/0x20 </IRQ> Moreover, if the suspend duration of the virtual machine is not long enough to trigger a hard lockup in this scenario, since commit 98c25ead5eda ("KVM: VMX: Move preemption timer <=> hrtimer dance to common x86"), KVM will continue using the software timer until the guest reprograms the APIC timer in some way. Since the periodic timer does not require frequent APIC timer register programming, the guest may continue to use the software timer in ---truncated---
CVE-2025-71105 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: f2fs: use global inline_xattr_slab instead of per-sb slab cache As Hong Yun reported in mailing list: loop7: detected capacity change from 0 to 131072 ------------[ cut here ]------------ kmem_cache of name 'f2fs_xattr_entry-7:7' already exists WARNING: CPU: 0 PID: 24426 at mm/slab_common.c:110 kmem_cache_sanity_check mm/slab_common.c:109 [inline] WARNING: CPU: 0 PID: 24426 at mm/slab_common.c:110 __kmem_cache_create_args+0xa6/0x320 mm/slab_common.c:307 CPU: 0 UID: 0 PID: 24426 Comm: syz.7.1370 Not tainted 6.17.0-rc4 #1 PREEMPT(full) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 RIP: 0010:kmem_cache_sanity_check mm/slab_common.c:109 [inline] RIP: 0010:__kmem_cache_create_args+0xa6/0x320 mm/slab_common.c:307 Call Trace:  __kmem_cache_create include/linux/slab.h:353 [inline]  f2fs_kmem_cache_create fs/f2fs/f2fs.h:2943 [inline]  f2fs_init_xattr_caches+0xa5/0xe0 fs/f2fs/xattr.c:843  f2fs_fill_super+0x1645/0x2620 fs/f2fs/super.c:4918  get_tree_bdev_flags+0x1fb/0x260 fs/super.c:1692  vfs_get_tree+0x43/0x140 fs/super.c:1815  do_new_mount+0x201/0x550 fs/namespace.c:3808  do_mount fs/namespace.c:4136 [inline]  __do_sys_mount fs/namespace.c:4347 [inline]  __se_sys_mount+0x298/0x2f0 fs/namespace.c:4324  do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]  do_syscall_64+0x8e/0x3a0 arch/x86/entry/syscall_64.c:94  entry_SYSCALL_64_after_hwframe+0x76/0x7e The bug can be reproduced w/ below scripts: - mount /dev/vdb /mnt1 - mount /dev/vdc /mnt2 - umount /mnt1 - mounnt /dev/vdb /mnt1 The reason is if we created two slab caches, named f2fs_xattr_entry-7:3 and f2fs_xattr_entry-7:7, and they have the same slab size. Actually, slab system will only create one slab cache core structure which has slab name of "f2fs_xattr_entry-7:3", and two slab caches share the same structure and cache address. So, if we destroy f2fs_xattr_entry-7:3 cache w/ cache address, it will decrease reference count of slab cache, rather than release slab cache entirely, since there is one more user has referenced the cache. Then, if we try to create slab cache w/ name "f2fs_xattr_entry-7:3" again, slab system will find that there is existed cache which has the same name and trigger the warning. Let's changes to use global inline_xattr_slab instead of per-sb slab cache for fixing.