CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
Input: exc3000 - properly stop timer on shutdown
We need to stop the timer on driver unbind or probe failures, otherwise
we get UAF/Oops. |
In the Linux kernel, the following vulnerability has been resolved:
gfs2: Fix possible data races in gfs2_show_options()
Some fields such as gt_logd_secs of the struct gfs2_tune are accessed
without holding the lock gt_spin in gfs2_show_options():
val = sdp->sd_tune.gt_logd_secs;
if (val != 30)
seq_printf(s, ",commit=%d", val);
And thus can cause data races when gfs2_show_options() and other functions
such as gfs2_reconfigure() are concurrently executed:
spin_lock(>->gt_spin);
gt->gt_logd_secs = newargs->ar_commit;
To fix these possible data races, the lock sdp->sd_tune.gt_spin is
acquired before accessing the fields of gfs2_tune and released after these
accesses.
Further changes by Andreas:
- Don't hold the spin lock over the seq_printf operations. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath6kl: reduce WARN to dev_dbg() in callback
The warn is triggered on a known race condition, documented in the code above
the test, that is correctly handled. Using WARN() hinders automated testing.
Reducing severity. |
In the Linux kernel, the following vulnerability has been resolved:
accel/qaic: Fix a leak in map_user_pages()
If get_user_pages_fast() allocates some pages but not as many as we
wanted, then the current code leaks those pages. Call put_page() on
the pages before returning. |
vLLM is an inference and serving engine for large language models (LLMs). Before version 0.11.0rc2, the API key support in vLLM performs validation using a method that was vulnerable to a timing attack. API key validation uses a string comparison that takes longer the more characters the provided API key gets correct. Data analysis across many attempts could allow an attacker to determine when it finds the next correct character in the key sequence. Deployments relying on vLLM's built-in API key validation are vulnerable to authentication bypass using this technique. Version 0.11.0rc2 fixes the issue. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: Fix memory leakage
This patch fixes potential memory leakage and seg fault
in _gpuvm_import_dmabuf() function |
In the Linux kernel, the following vulnerability has been resolved:
ALSA: ac97: Fix possible NULL dereference in snd_ac97_mixer
smatch error:
sound/pci/ac97/ac97_codec.c:2354 snd_ac97_mixer() error:
we previously assumed 'rac97' could be null (see line 2072)
remove redundant assignment, return error if rac97 is NULL. |
In the Linux kernel, the following vulnerability has been resolved:
vme: Fix error not catched in fake_init()
In fake_init(), __root_device_register() is possible to fail but it's
ignored, which can cause unregistering vme_root fail when exit.
general protection fault,
probably for non-canonical address 0xdffffc000000008c
KASAN: null-ptr-deref in range [0x0000000000000460-0x0000000000000467]
RIP: 0010:root_device_unregister+0x26/0x60
Call Trace:
<TASK>
__x64_sys_delete_module+0x34f/0x540
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Return error when __root_device_register() fails. |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/rxe: Fix mr->map double free
rxe_mr_cleanup() which tries to free mr->map again will be called when
rxe_mr_init_user() fails:
CPU: 0 PID: 4917 Comm: rdma_flush_serv Kdump: loaded Not tainted 6.1.0-rc1-roce-flush+ #25
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x45/0x5d
panic+0x19e/0x349
end_report.part.0+0x54/0x7c
kasan_report.cold+0xa/0xf
rxe_mr_cleanup+0x9d/0xf0 [rdma_rxe]
__rxe_cleanup+0x10a/0x1e0 [rdma_rxe]
rxe_reg_user_mr+0xb7/0xd0 [rdma_rxe]
ib_uverbs_reg_mr+0x26a/0x480 [ib_uverbs]
ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0x1a2/0x250 [ib_uverbs]
ib_uverbs_cmd_verbs+0x1397/0x15a0 [ib_uverbs]
This issue was firstly exposed since commit b18c7da63fcb ("RDMA/rxe: Fix
memory leak in error path code") and then we fixed it in commit
8ff5f5d9d8cf ("RDMA/rxe: Prevent double freeing rxe_map_set()") but this
fix was reverted together at last by commit 1e75550648da (Revert
"RDMA/rxe: Create duplicate mapping tables for FMRs")
Simply let rxe_mr_cleanup() always handle freeing the mr->map once it is
successfully allocated. |
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: qcom-adm: fix wrong sizeof config in slave_config
Fix broken slave_config function that uncorrectly compare the
peripheral_size with the size of the config pointer instead of the size
of the config struct. This cause the crci value to be ignored and cause
a kernel panic on any slave that use adm driver.
To fix this, compare to the size of the struct and NOT the size of the
pointer. |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: reject invalid reloc tree root keys with stack dump
[BUG]
Syzbot reported a crash that an ASSERT() got triggered inside
prepare_to_merge().
That ASSERT() makes sure the reloc tree is properly pointed back by its
subvolume tree.
[CAUSE]
After more debugging output, it turns out we had an invalid reloc tree:
BTRFS error (device loop1): reloc tree mismatch, root 8 has no reloc root, expect reloc root key (-8, 132, 8) gen 17
Note the above root key is (TREE_RELOC_OBJECTID, ROOT_ITEM,
QUOTA_TREE_OBJECTID), meaning it's a reloc tree for quota tree.
But reloc trees can only exist for subvolumes, as for non-subvolume
trees, we just COW the involved tree block, no need to create a reloc
tree since those tree blocks won't be shared with other trees.
Only subvolumes tree can share tree blocks with other trees (thus they
have BTRFS_ROOT_SHAREABLE flag).
Thus this new debug output proves my previous assumption that corrupted
on-disk data can trigger that ASSERT().
[FIX]
Besides the dedicated fix and the graceful exit, also let tree-checker to
check such root keys, to make sure reloc trees can only exist for subvolumes. |
In the Linux kernel, the following vulnerability has been resolved:
perf/smmuv3: Fix hotplug callback leak in arm_smmu_pmu_init()
arm_smmu_pmu_init() won't remove the callback added by
cpuhp_setup_state_multi() when platform_driver_register() failed. Remove
the callback by cpuhp_remove_multi_state() in fail path.
Similar to the handling of arm_ccn_init() in commit 26242b330093 ("bus:
arm-ccn: Prevent hotplug callback leak") |
In the Linux kernel, the following vulnerability has been resolved:
media: i2c: hi846: Fix memory leak in hi846_parse_dt()
If any of the checks related to the supported link frequencies fail, then
the V4L2 fwnode resources don't get released before returning, which leads
to a memleak. Fix this by properly freeing the V4L2 fwnode data in a
designated label. |
In the Linux kernel, the following vulnerability has been resolved:
staging: rtl8723bs: fix a potential memory leak in rtw_init_cmd_priv()
In rtw_init_cmd_priv(), if `pcmdpriv->rsp_allocated_buf` is allocated
in failure, then `pcmdpriv->cmd_allocated_buf` will be not properly
released. Besides, considering there are only two error paths and the
first one can directly return, so we do not need implicitly jump to the
`exit` tag to execute the error handler.
So this patch added `kfree(pcmdpriv->cmd_allocated_buf);` on the error
path to release the resource and simplified the return logic of
rtw_init_cmd_priv(). As there is no proper device to test with, no runtime
testing was performed. |
In the Linux kernel, the following vulnerability has been resolved:
rcu: Avoid stack overflow due to __rcu_irq_enter_check_tick() being kprobe-ed
Registering a kprobe on __rcu_irq_enter_check_tick() can cause kernel
stack overflow as shown below. This issue can be reproduced by enabling
CONFIG_NO_HZ_FULL and booting the kernel with argument "nohz_full=",
and then giving the following commands at the shell prompt:
# cd /sys/kernel/tracing/
# echo 'p:mp1 __rcu_irq_enter_check_tick' >> kprobe_events
# echo 1 > events/kprobes/enable
This commit therefore adds __rcu_irq_enter_check_tick() to the kprobes
blacklist using NOKPROBE_SYMBOL().
Insufficient stack space to handle exception!
ESR: 0x00000000f2000004 -- BRK (AArch64)
FAR: 0x0000ffffccf3e510
Task stack: [0xffff80000ad30000..0xffff80000ad38000]
IRQ stack: [0xffff800008050000..0xffff800008058000]
Overflow stack: [0xffff089c36f9f310..0xffff089c36fa0310]
CPU: 5 PID: 190 Comm: bash Not tainted 6.2.0-rc2-00320-g1f5abbd77e2c #19
Hardware name: linux,dummy-virt (DT)
pstate: 400003c5 (nZcv DAIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __rcu_irq_enter_check_tick+0x0/0x1b8
lr : ct_nmi_enter+0x11c/0x138
sp : ffff80000ad30080
x29: ffff80000ad30080 x28: ffff089c82e20000 x27: 0000000000000000
x26: 0000000000000000 x25: ffff089c02a8d100 x24: 0000000000000000
x23: 00000000400003c5 x22: 0000ffffccf3e510 x21: ffff089c36fae148
x20: ffff80000ad30120 x19: ffffa8da8fcce148 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000 x15: ffffa8da8e44ea6c
x14: ffffa8da8e44e968 x13: ffffa8da8e03136c x12: 1fffe113804d6809
x11: ffff6113804d6809 x10: 0000000000000a60 x9 : dfff800000000000
x8 : ffff089c026b404f x7 : 00009eec7fb297f7 x6 : 0000000000000001
x5 : ffff80000ad30120 x4 : dfff800000000000 x3 : ffffa8da8e3016f4
x2 : 0000000000000003 x1 : 0000000000000000 x0 : 0000000000000000
Kernel panic - not syncing: kernel stack overflow
CPU: 5 PID: 190 Comm: bash Not tainted 6.2.0-rc2-00320-g1f5abbd77e2c #19
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace+0xf8/0x108
show_stack+0x20/0x30
dump_stack_lvl+0x68/0x84
dump_stack+0x1c/0x38
panic+0x214/0x404
add_taint+0x0/0xf8
panic_bad_stack+0x144/0x160
handle_bad_stack+0x38/0x58
__bad_stack+0x78/0x7c
__rcu_irq_enter_check_tick+0x0/0x1b8
arm64_enter_el1_dbg.isra.0+0x14/0x20
el1_dbg+0x2c/0x90
el1h_64_sync_handler+0xcc/0xe8
el1h_64_sync+0x64/0x68
__rcu_irq_enter_check_tick+0x0/0x1b8
arm64_enter_el1_dbg.isra.0+0x14/0x20
el1_dbg+0x2c/0x90
el1h_64_sync_handler+0xcc/0xe8
el1h_64_sync+0x64/0x68
__rcu_irq_enter_check_tick+0x0/0x1b8
arm64_enter_el1_dbg.isra.0+0x14/0x20
el1_dbg+0x2c/0x90
el1h_64_sync_handler+0xcc/0xe8
el1h_64_sync+0x64/0x68
__rcu_irq_enter_check_tick+0x0/0x1b8
[...]
el1_dbg+0x2c/0x90
el1h_64_sync_handler+0xcc/0xe8
el1h_64_sync+0x64/0x68
__rcu_irq_enter_check_tick+0x0/0x1b8
arm64_enter_el1_dbg.isra.0+0x14/0x20
el1_dbg+0x2c/0x90
el1h_64_sync_handler+0xcc/0xe8
el1h_64_sync+0x64/0x68
__rcu_irq_enter_check_tick+0x0/0x1b8
arm64_enter_el1_dbg.isra.0+0x14/0x20
el1_dbg+0x2c/0x90
el1h_64_sync_handler+0xcc/0xe8
el1h_64_sync+0x64/0x68
__rcu_irq_enter_check_tick+0x0/0x1b8
el1_interrupt+0x28/0x60
el1h_64_irq_handler+0x18/0x28
el1h_64_irq+0x64/0x68
__ftrace_set_clr_event_nolock+0x98/0x198
__ftrace_set_clr_event+0x58/0x80
system_enable_write+0x144/0x178
vfs_write+0x174/0x738
ksys_write+0xd0/0x188
__arm64_sys_write+0x4c/0x60
invoke_syscall+0x64/0x180
el0_svc_common.constprop.0+0x84/0x160
do_el0_svc+0x48/0xe8
el0_svc+0x34/0xd0
el0t_64_sync_handler+0xb8/0xc0
el0t_64_sync+0x190/0x194
SMP: stopping secondary CPUs
Kernel Offset: 0x28da86000000 from 0xffff800008000000
PHYS_OFFSET: 0xfffff76600000000
CPU features: 0x00000,01a00100,0000421b
Memory Limit: none |
In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: mlme: fix null-ptr deref on failed assoc
If association to an AP without a link 0 fails, then we crash in
tracing because it assumes that either ap_mld_addr or link 0 BSS
is valid, since we clear sdata->vif.valid_links and then don't
add the ap_mld_addr to the struct.
Since we clear also sdata->vif.cfg.ap_addr, keep a local copy of
it and assign it earlier, before clearing valid_links, to fix
this. |
In the Linux kernel, the following vulnerability has been resolved:
tipc: fix an information leak in tipc_topsrv_kern_subscr
Use a 8-byte write to initialize sub.usr_handle in
tipc_topsrv_kern_subscr(), otherwise four bytes remain uninitialized
when issuing setsockopt(..., SOL_TIPC, ...).
This resulted in an infoleak reported by KMSAN when the packet was
received:
=====================================================
BUG: KMSAN: kernel-infoleak in copyout+0xbc/0x100 lib/iov_iter.c:169
instrument_copy_to_user ./include/linux/instrumented.h:121
copyout+0xbc/0x100 lib/iov_iter.c:169
_copy_to_iter+0x5c0/0x20a0 lib/iov_iter.c:527
copy_to_iter ./include/linux/uio.h:176
simple_copy_to_iter+0x64/0xa0 net/core/datagram.c:513
__skb_datagram_iter+0x123/0xdc0 net/core/datagram.c:419
skb_copy_datagram_iter+0x58/0x200 net/core/datagram.c:527
skb_copy_datagram_msg ./include/linux/skbuff.h:3903
packet_recvmsg+0x521/0x1e70 net/packet/af_packet.c:3469
____sys_recvmsg+0x2c4/0x810 net/socket.c:?
___sys_recvmsg+0x217/0x840 net/socket.c:2743
__sys_recvmsg net/socket.c:2773
__do_sys_recvmsg net/socket.c:2783
__se_sys_recvmsg net/socket.c:2780
__x64_sys_recvmsg+0x364/0x540 net/socket.c:2780
do_syscall_x64 arch/x86/entry/common.c:50
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd arch/x86/entry/entry_64.S:120
...
Uninit was stored to memory at:
tipc_sub_subscribe+0x42d/0xb50 net/tipc/subscr.c:156
tipc_conn_rcv_sub+0x246/0x620 net/tipc/topsrv.c:375
tipc_topsrv_kern_subscr+0x2e8/0x400 net/tipc/topsrv.c:579
tipc_group_create+0x4e7/0x7d0 net/tipc/group.c:190
tipc_sk_join+0x2a8/0x770 net/tipc/socket.c:3084
tipc_setsockopt+0xae5/0xe40 net/tipc/socket.c:3201
__sys_setsockopt+0x87f/0xdc0 net/socket.c:2252
__do_sys_setsockopt net/socket.c:2263
__se_sys_setsockopt net/socket.c:2260
__x64_sys_setsockopt+0xe0/0x160 net/socket.c:2260
do_syscall_x64 arch/x86/entry/common.c:50
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd arch/x86/entry/entry_64.S:120
Local variable sub created at:
tipc_topsrv_kern_subscr+0x57/0x400 net/tipc/topsrv.c:562
tipc_group_create+0x4e7/0x7d0 net/tipc/group.c:190
Bytes 84-87 of 88 are uninitialized
Memory access of size 88 starts at ffff88801ed57cd0
Data copied to user address 0000000020000400
...
===================================================== |
In the Linux kernel, the following vulnerability has been resolved:
x86: fix clear_user_rep_good() exception handling annotation
This code no longer exists in mainline, because it was removed in
commit d2c95f9d6802 ("x86: don't use REP_GOOD or ERMS for user memory
clearing") upstream.
However, rather than backport the full range of x86 memory clearing and
copying cleanups, fix the exception table annotation placement for the
final 'rep movsb' in clear_user_rep_good(): rather than pointing at the
actual instruction that did the user space access, it pointed to the
register move just before it.
That made sense from a code flow standpoint, but not from an actual
usage standpoint: it means that if user access takes an exception, the
exception handler won't actually find the instruction in the exception
tables.
As a result, rather than fixing it up and returning -EFAULT, it would
then turn it into a kernel oops report instead, something like:
BUG: unable to handle page fault for address: 0000000020081000
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
...
RIP: 0010:clear_user_rep_good+0x1c/0x30 arch/x86/lib/clear_page_64.S:147
...
Call Trace:
__clear_user arch/x86/include/asm/uaccess_64.h:103 [inline]
clear_user arch/x86/include/asm/uaccess_64.h:124 [inline]
iov_iter_zero+0x709/0x1290 lib/iov_iter.c:800
iomap_dio_hole_iter fs/iomap/direct-io.c:389 [inline]
iomap_dio_iter fs/iomap/direct-io.c:440 [inline]
__iomap_dio_rw+0xe3d/0x1cd0 fs/iomap/direct-io.c:601
iomap_dio_rw+0x40/0xa0 fs/iomap/direct-io.c:689
ext4_dio_read_iter fs/ext4/file.c:94 [inline]
ext4_file_read_iter+0x4be/0x690 fs/ext4/file.c:145
call_read_iter include/linux/fs.h:2183 [inline]
do_iter_readv_writev+0x2e0/0x3b0 fs/read_write.c:733
do_iter_read+0x2f2/0x750 fs/read_write.c:796
vfs_readv+0xe5/0x150 fs/read_write.c:916
do_preadv+0x1b6/0x270 fs/read_write.c:1008
__do_sys_preadv2 fs/read_write.c:1070 [inline]
__se_sys_preadv2 fs/read_write.c:1061 [inline]
__x64_sys_preadv2+0xef/0x150 fs/read_write.c:1061
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x39/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
which then looks like a filesystem bug rather than the incorrect
exception annotation that it is.
[ The alternative to this one-liner fix is to take the upstream series
that cleans this all up:
68674f94ffc9 ("x86: don't use REP_GOOD or ERMS for small memory copies")
20f3337d350c ("x86: don't use REP_GOOD or ERMS for small memory clearing")
adfcf4231b8c ("x86: don't use REP_GOOD or ERMS for user memory copies")
* d2c95f9d6802 ("x86: don't use REP_GOOD or ERMS for user memory clearing")
3639a535587d ("x86: move stac/clac from user copy routines into callers")
577e6a7fd50d ("x86: inline the 'rep movs' in user copies for the FSRM case")
8c9b6a88b7e2 ("x86: improve on the non-rep 'clear_user' function")
427fda2c8a49 ("x86: improve on the non-rep 'copy_user' function")
* e046fe5a36a9 ("x86: set FSRS automatically on AMD CPUs that have FSRM")
e1f2750edc4a ("x86: remove 'zerorest' argument from __copy_user_nocache()")
034ff37d3407 ("x86: rewrite '__copy_user_nocache' function")
with either the whole series or at a minimum the two marked commits
being needed to fix this issue ] |
In the Linux kernel, the following vulnerability has been resolved:
blk-iolatency: Fix memory leak on add_disk() failures
When a gendisk is successfully initialized but add_disk() fails such as when
a loop device has invalid number of minor device numbers specified,
blkcg_init_disk() is called during init and then blkcg_exit_disk() during
error handling. Unfortunately, iolatency gets initialized in the former but
doesn't get cleaned up in the latter.
This is because, in non-error cases, the cleanup is performed by
del_gendisk() calling rq_qos_exit(), the assumption being that rq_qos
policies, iolatency being one of them, can only be activated once the disk
is fully registered and visible. That assumption is true for wbt and iocost,
but not so for iolatency as it gets initialized before add_disk() is called.
It is desirable to lazy-init rq_qos policies because they are optional
features and add to hot path overhead once initialized - each IO has to walk
all the registered rq_qos policies. So, we want to switch iolatency to lazy
init too. However, that's a bigger change. As a fix for the immediate
problem, let's just add an extra call to rq_qos_exit() in blkcg_exit_disk().
This is safe because duplicate calls to rq_qos_exit() become noop's. |
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix uninititialized value in 'ext4_evict_inode'
Syzbot found the following issue:
=====================================================
BUG: KMSAN: uninit-value in ext4_evict_inode+0xdd/0x26b0 fs/ext4/inode.c:180
ext4_evict_inode+0xdd/0x26b0 fs/ext4/inode.c:180
evict+0x365/0x9a0 fs/inode.c:664
iput_final fs/inode.c:1747 [inline]
iput+0x985/0xdd0 fs/inode.c:1773
__ext4_new_inode+0xe54/0x7ec0 fs/ext4/ialloc.c:1361
ext4_mknod+0x376/0x840 fs/ext4/namei.c:2844
vfs_mknod+0x79d/0x830 fs/namei.c:3914
do_mknodat+0x47d/0xaa0
__do_sys_mknodat fs/namei.c:3992 [inline]
__se_sys_mknodat fs/namei.c:3989 [inline]
__ia32_sys_mknodat+0xeb/0x150 fs/namei.c:3989
do_syscall_32_irqs_on arch/x86/entry/common.c:112 [inline]
__do_fast_syscall_32+0xa2/0x100 arch/x86/entry/common.c:178
do_fast_syscall_32+0x33/0x70 arch/x86/entry/common.c:203
do_SYSENTER_32+0x1b/0x20 arch/x86/entry/common.c:246
entry_SYSENTER_compat_after_hwframe+0x70/0x82
Uninit was created at:
__alloc_pages+0x9f1/0xe80 mm/page_alloc.c:5578
alloc_pages+0xaae/0xd80 mm/mempolicy.c:2285
alloc_slab_page mm/slub.c:1794 [inline]
allocate_slab+0x1b5/0x1010 mm/slub.c:1939
new_slab mm/slub.c:1992 [inline]
___slab_alloc+0x10c3/0x2d60 mm/slub.c:3180
__slab_alloc mm/slub.c:3279 [inline]
slab_alloc_node mm/slub.c:3364 [inline]
slab_alloc mm/slub.c:3406 [inline]
__kmem_cache_alloc_lru mm/slub.c:3413 [inline]
kmem_cache_alloc_lru+0x6f3/0xb30 mm/slub.c:3429
alloc_inode_sb include/linux/fs.h:3117 [inline]
ext4_alloc_inode+0x5f/0x860 fs/ext4/super.c:1321
alloc_inode+0x83/0x440 fs/inode.c:259
new_inode_pseudo fs/inode.c:1018 [inline]
new_inode+0x3b/0x430 fs/inode.c:1046
__ext4_new_inode+0x2a7/0x7ec0 fs/ext4/ialloc.c:959
ext4_mkdir+0x4d5/0x1560 fs/ext4/namei.c:2992
vfs_mkdir+0x62a/0x870 fs/namei.c:4035
do_mkdirat+0x466/0x7b0 fs/namei.c:4060
__do_sys_mkdirat fs/namei.c:4075 [inline]
__se_sys_mkdirat fs/namei.c:4073 [inline]
__ia32_sys_mkdirat+0xc4/0x120 fs/namei.c:4073
do_syscall_32_irqs_on arch/x86/entry/common.c:112 [inline]
__do_fast_syscall_32+0xa2/0x100 arch/x86/entry/common.c:178
do_fast_syscall_32+0x33/0x70 arch/x86/entry/common.c:203
do_SYSENTER_32+0x1b/0x20 arch/x86/entry/common.c:246
entry_SYSENTER_compat_after_hwframe+0x70/0x82
CPU: 1 PID: 4625 Comm: syz-executor.2 Not tainted 6.1.0-rc4-syzkaller-62821-gcb231e2f67ec #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022
=====================================================
Now, 'ext4_alloc_inode()' didn't init 'ei->i_flags'. If new inode failed
before set 'ei->i_flags' in '__ext4_new_inode()', then do 'iput()'. As after
6bc0d63dad7f commit will access 'ei->i_flags' in 'ext4_evict_inode()' which
will lead to access uninit-value.
To solve above issue just init 'ei->i_flags' in 'ext4_alloc_inode()'. |