| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/vt-d: Fix UAF on sva unbind with pending IOPFs
Commit 17fce9d2336d ("iommu/vt-d: Put iopf enablement in domain attach
path") disables IOPF on device by removing the device from its IOMMU's
IOPF queue when the last IOPF-capable domain is detached from the device.
Unfortunately, it did this in a wrong place where there are still pending
IOPFs. As a result, a use-after-free error is potentially triggered and
eventually a kernel panic with a kernel trace similar to the following:
refcount_t: underflow; use-after-free.
WARNING: CPU: 3 PID: 313 at lib/refcount.c:28 refcount_warn_saturate+0xd8/0xe0
Workqueue: iopf_queue/dmar0-iopfq iommu_sva_handle_iopf
Call Trace:
<TASK>
iopf_free_group+0xe/0x20
process_one_work+0x197/0x3d0
worker_thread+0x23a/0x350
? rescuer_thread+0x4a0/0x4a0
kthread+0xf8/0x230
? finish_task_switch.isra.0+0x81/0x260
? kthreads_online_cpu+0x110/0x110
? kthreads_online_cpu+0x110/0x110
ret_from_fork+0x13b/0x170
? kthreads_online_cpu+0x110/0x110
ret_from_fork_asm+0x11/0x20
</TASK>
---[ end trace 0000000000000000 ]---
The intel_pasid_tear_down_entry() function is responsible for blocking
hardware from generating new page faults and flushing all in-flight
ones. Therefore, moving iopf_for_domain_remove() after this function
should resolve this. |
| In the Linux kernel, the following vulnerability has been resolved:
padata: Fix pd UAF once and for all
There is a race condition/UAF in padata_reorder that goes back
to the initial commit. A reference count is taken at the start
of the process in padata_do_parallel, and released at the end in
padata_serial_worker.
This reference count is (and only is) required for padata_replace
to function correctly. If padata_replace is never called then
there is no issue.
In the function padata_reorder which serves as the core of padata,
as soon as padata is added to queue->serial.list, and the associated
spin lock released, that padata may be processed and the reference
count on pd would go away.
Fix this by getting the next padata before the squeue->serial lock
is released.
In order to make this possible, simplify padata_reorder by only
calling it once the next padata arrives. |
| In the Linux kernel, the following vulnerability has been resolved:
zloop: fix KASAN use-after-free of tag set
When a zoned loop device, or zloop device, is removed, KASAN enabled
kernel reports "BUG KASAN use-after-free" in blk_mq_free_tag_set(). The
BUG happens because zloop_ctl_remove() calls put_disk(), which invokes
zloop_free_disk(). The zloop_free_disk() frees the memory allocated for
the zlo pointer. However, after the memory is freed, zloop_ctl_remove()
calls blk_mq_free_tag_set(&zlo->tag_set), which accesses the freed zlo.
Hence the KASAN use-after-free.
zloop_ctl_remove()
put_disk(zlo->disk)
put_device()
kobject_put()
...
zloop_free_disk()
kvfree(zlo)
blk_mq_free_tag_set(&zlo->tag_set)
To avoid the BUG, move the call to blk_mq_free_tag_set(&zlo->tag_set)
from zloop_ctl_remove() into zloop_free_disk(). This ensures that
the tag_set is freed before the call to kvfree(zlo). |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: Fix error code in iwl_op_mode_dvm_start()
Preserve the error code if iwl_setup_deferred_work() fails. The current
code returns ERR_PTR(0) (which is NULL) on this path. I believe the
missing error code potentially leads to a use after free involving
debugfs. |
| Use-after-free in the Audio/Video component. This vulnerability affects Firefox < 145, Firefox ESR < 140.5, Firefox ESR < 115.30, Thunderbird < 145, and Thunderbird < 140.5. |
| A security vulnerability has been detected in jarun nnn up to 5.1. The impacted element is the function show_content_in_floating_window/run_cmd_as_plugin of the file nnn/src/nnn.c. The manipulation leads to double free. An attack has to be approached locally. The identifier of the patch is 2f07ccdf21e705377862e5f9dfa31e1694979ac7. It is suggested to install a patch to address this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: core: Fix double-free of fwnode in i2c_unregister_device()
Before commit df6d7277e552 ("i2c: core: Do not dereference fwnode in struct
device"), i2c_unregister_device() only called fwnode_handle_put() on
of_node-s in the form of calling of_node_put(client->dev.of_node).
But after this commit the i2c_client's fwnode now unconditionally gets
fwnode_handle_put() on it.
When the i2c_client has no primary (ACPI / OF) fwnode but it does have
a software fwnode, the software-node will be the primary node and
fwnode_handle_put() will put() it.
But for the software fwnode device_remove_software_node() will also put()
it leading to a double free:
[ 82.665598] ------------[ cut here ]------------
[ 82.665609] refcount_t: underflow; use-after-free.
[ 82.665808] WARNING: CPU: 3 PID: 1502 at lib/refcount.c:28 refcount_warn_saturate+0xba/0x11
...
[ 82.666830] RIP: 0010:refcount_warn_saturate+0xba/0x110
...
[ 82.666962] <TASK>
[ 82.666971] i2c_unregister_device+0x60/0x90
Fix this by not calling fwnode_handle_put() when the primary fwnode is
a software-node. |
| In the Linux kernel, the following vulnerability has been resolved:
net/smc: fix UAF on smcsk after smc_listen_out()
BPF CI testing report a UAF issue:
[ 16.446633] BUG: kernel NULL pointer dereference, address: 000000000000003 0
[ 16.447134] #PF: supervisor read access in kernel mod e
[ 16.447516] #PF: error_code(0x0000) - not-present pag e
[ 16.447878] PGD 0 P4D 0
[ 16.448063] Oops: Oops: 0000 [#1] PREEMPT SMP NOPT I
[ 16.448409] CPU: 0 UID: 0 PID: 9 Comm: kworker/0:1 Tainted: G OE 6.13.0-rc3-g89e8a75fda73-dirty #4 2
[ 16.449124] Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODUL E
[ 16.449502] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/201 4
[ 16.450201] Workqueue: smc_hs_wq smc_listen_wor k
[ 16.450531] RIP: 0010:smc_listen_work+0xc02/0x159 0
[ 16.452158] RSP: 0018:ffffb5ab40053d98 EFLAGS: 0001024 6
[ 16.452526] RAX: 0000000000000001 RBX: 0000000000000002 RCX: 000000000000030 0
[ 16.452994] RDX: 0000000000000280 RSI: 00003513840053f0 RDI: 000000000000000 0
[ 16.453492] RBP: ffffa097808e3800 R08: ffffa09782dba1e0 R09: 000000000000000 5
[ 16.453987] R10: 0000000000000000 R11: 0000000000000000 R12: ffffa0978274640 0
[ 16.454497] R13: 0000000000000000 R14: 0000000000000000 R15: ffffa09782d4092 0
[ 16.454996] FS: 0000000000000000(0000) GS:ffffa097bbc00000(0000) knlGS:000000000000000 0
[ 16.455557] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003 3
[ 16.455961] CR2: 0000000000000030 CR3: 0000000102788004 CR4: 0000000000770ef 0
[ 16.456459] PKRU: 5555555 4
[ 16.456654] Call Trace :
[ 16.456832] <TASK >
[ 16.456989] ? __die+0x23/0x7 0
[ 16.457215] ? page_fault_oops+0x180/0x4c 0
[ 16.457508] ? __lock_acquire+0x3e6/0x249 0
[ 16.457801] ? exc_page_fault+0x68/0x20 0
[ 16.458080] ? asm_exc_page_fault+0x26/0x3 0
[ 16.458389] ? smc_listen_work+0xc02/0x159 0
[ 16.458689] ? smc_listen_work+0xc02/0x159 0
[ 16.458987] ? lock_is_held_type+0x8f/0x10 0
[ 16.459284] process_one_work+0x1ea/0x6d 0
[ 16.459570] worker_thread+0x1c3/0x38 0
[ 16.459839] ? __pfx_worker_thread+0x10/0x1 0
[ 16.460144] kthread+0xe0/0x11 0
[ 16.460372] ? __pfx_kthread+0x10/0x1 0
[ 16.460640] ret_from_fork+0x31/0x5 0
[ 16.460896] ? __pfx_kthread+0x10/0x1 0
[ 16.461166] ret_from_fork_asm+0x1a/0x3 0
[ 16.461453] </TASK >
[ 16.461616] Modules linked in: bpf_testmod(OE) [last unloaded: bpf_testmod(OE) ]
[ 16.462134] CR2: 000000000000003 0
[ 16.462380] ---[ end trace 0000000000000000 ]---
[ 16.462710] RIP: 0010:smc_listen_work+0xc02/0x1590
The direct cause of this issue is that after smc_listen_out_connected(),
newclcsock->sk may be NULL since it will releases the smcsk. Therefore,
if the application closes the socket immediately after accept,
newclcsock->sk can be NULL. A possible execution order could be as
follows:
smc_listen_work | userspace
-----------------------------------------------------------------
lock_sock(sk) |
smc_listen_out_connected() |
| \- smc_listen_out |
| | \- release_sock |
| |- sk->sk_data_ready() |
| fd = accept();
| close(fd);
| \- socket->sk = NULL;
/* newclcsock->sk is NULL now */
SMC_STAT_SERV_SUCC_INC(sock_net(newclcsock->sk))
Since smc_listen_out_connected() will not fail, simply swapping the order
of the code can easily fix this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe: Fix vm_bind_ioctl double free bug
If the argument check during an array bind fails, the bind_ops are freed
twice as seen below. Fix this by setting bind_ops to NULL after freeing.
==================================================================
BUG: KASAN: double-free in xe_vm_bind_ioctl+0x1b2/0x21f0 [xe]
Free of addr ffff88813bb9b800 by task xe_vm/14198
CPU: 5 UID: 0 PID: 14198 Comm: xe_vm Not tainted 6.16.0-xe-eudebug-cmanszew+ #520 PREEMPT(full)
Hardware name: Intel Corporation Alder Lake Client Platform/AlderLake-P DDR5 RVP, BIOS ADLPFWI1.R00.2411.A02.2110081023 10/08/2021
Call Trace:
<TASK>
dump_stack_lvl+0x82/0xd0
print_report+0xcb/0x610
? __virt_addr_valid+0x19a/0x300
? xe_vm_bind_ioctl+0x1b2/0x21f0 [xe]
kasan_report_invalid_free+0xc8/0xf0
? xe_vm_bind_ioctl+0x1b2/0x21f0 [xe]
? xe_vm_bind_ioctl+0x1b2/0x21f0 [xe]
check_slab_allocation+0x102/0x130
kfree+0x10d/0x440
? should_fail_ex+0x57/0x2f0
? xe_vm_bind_ioctl+0x1b2/0x21f0 [xe]
xe_vm_bind_ioctl+0x1b2/0x21f0 [xe]
? __pfx_xe_vm_bind_ioctl+0x10/0x10 [xe]
? __lock_acquire+0xab9/0x27f0
? lock_acquire+0x165/0x300
? drm_dev_enter+0x53/0xe0 [drm]
? find_held_lock+0x2b/0x80
? drm_dev_exit+0x30/0x50 [drm]
? drm_ioctl_kernel+0x128/0x1c0 [drm]
drm_ioctl_kernel+0x128/0x1c0 [drm]
? __pfx_xe_vm_bind_ioctl+0x10/0x10 [xe]
? find_held_lock+0x2b/0x80
? __pfx_drm_ioctl_kernel+0x10/0x10 [drm]
? should_fail_ex+0x57/0x2f0
? __pfx_xe_vm_bind_ioctl+0x10/0x10 [xe]
drm_ioctl+0x352/0x620 [drm]
? __pfx_drm_ioctl+0x10/0x10 [drm]
? __pfx_rpm_resume+0x10/0x10
? do_raw_spin_lock+0x11a/0x1b0
? find_held_lock+0x2b/0x80
? __pm_runtime_resume+0x61/0xc0
? rcu_is_watching+0x20/0x50
? trace_irq_enable.constprop.0+0xac/0xe0
xe_drm_ioctl+0x91/0xc0 [xe]
__x64_sys_ioctl+0xb2/0x100
? rcu_is_watching+0x20/0x50
do_syscall_64+0x68/0x2e0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7fa9acb24ded
(cherry picked from commit a01b704527c28a2fd43a17a85f8996b75ec8492a) |
| In the Linux kernel, the following vulnerability has been resolved:
habanalabs: fix UAF in export_dmabuf()
As soon as we'd inserted a file reference into descriptor table, another
thread could close it. That's fine for the case when all we are doing is
returning that descriptor to userland (it's a race, but it's a userland
race and there's nothing the kernel can do about it). However, if we
follow fd_install() with any kind of access to objects that would be
destroyed on close (be it the struct file itself or anything destroyed
by its ->release()), we have a UAF.
dma_buf_fd() is a combination of reserving a descriptor and fd_install().
habanalabs export_dmabuf() calls it and then proceeds to access the
objects destroyed on close. In particular, it grabs an extra reference to
another struct file that will be dropped as part of ->release() for ours;
that "will be" is actually "might have already been".
Fix that by reserving descriptor before anything else and do fd_install()
only when everything had been set up. As a side benefit, we no longer
have the failure exit with file already created, but reference to
underlying file (as well as ->dmabuf_export_cnt, etc.) not grabbed yet;
unlike dma_buf_fd(), fd_install() can't fail. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/futex: ensure io_futex_wait() cleans up properly on failure
The io_futex_data is allocated upfront and assigned to the io_kiocb
async_data field, but the request isn't marked with REQ_F_ASYNC_DATA
at that point. Those two should always go together, as the flag tells
io_uring whether the field is valid or not.
Additionally, on failure cleanup, the futex handler frees the data but
does not clear ->async_data. Clear the data and the flag in the error
path as well.
Thanks to Trend Micro Zero Day Initiative and particularly ReDress for
reporting this. |
| In the Linux kernel, the following vulnerability has been resolved:
media: ivsc: Fix crash at shutdown due to missing mei_cldev_disable() calls
Both the ACE and CSI driver are missing a mei_cldev_disable() call in
their remove() function.
This causes the mei_cl client to stay part of the mei_device->file_list
list even though its memory is freed by mei_cl_bus_dev_release() calling
kfree(cldev->cl).
This leads to a use-after-free when mei_vsc_remove() runs mei_stop()
which first removes all mei bus devices calling mei_ace_remove() and
mei_csi_remove() followed by mei_cl_bus_dev_release() and then calls
mei_cl_all_disconnect() which walks over mei_device->file_list dereferecing
the just freed cldev->cl.
And mei_vsc_remove() it self is run at shutdown because of the
platform_device_unregister(tp->pdev) in vsc_tp_shutdown()
When building a kernel with KASAN this leads to the following KASAN report:
[ 106.634504] ==================================================================
[ 106.634623] BUG: KASAN: slab-use-after-free in mei_cl_set_disconnected (drivers/misc/mei/client.c:783) mei
[ 106.634683] Read of size 4 at addr ffff88819cb62018 by task systemd-shutdow/1
[ 106.634729]
[ 106.634767] Tainted: [E]=UNSIGNED_MODULE
[ 106.634770] Hardware name: Dell Inc. XPS 16 9640/09CK4V, BIOS 1.12.0 02/10/2025
[ 106.634773] Call Trace:
[ 106.634777] <TASK>
...
[ 106.634871] kasan_report (mm/kasan/report.c:221 mm/kasan/report.c:636)
[ 106.634901] mei_cl_set_disconnected (drivers/misc/mei/client.c:783) mei
[ 106.634921] mei_cl_all_disconnect (drivers/misc/mei/client.c:2165 (discriminator 4)) mei
[ 106.634941] mei_reset (drivers/misc/mei/init.c:163) mei
...
[ 106.635042] mei_stop (drivers/misc/mei/init.c:348) mei
[ 106.635062] mei_vsc_remove (drivers/misc/mei/mei_dev.h:784 drivers/misc/mei/platform-vsc.c:393) mei_vsc
[ 106.635066] platform_remove (drivers/base/platform.c:1424)
Add the missing mei_cldev_disable() calls so that the mei_cl gets removed
from mei_device->file_list before it is freed to fix this. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/migrate: prevent potential UAF
If we hit the error path, the previous fence (if there is one) has
already been put() prior to this, so doing a fence_wait could lead to
UAF. Tweak the flow to do to the put() until after we do the wait.
(cherry picked from commit 9b7ca35ed28fe5fad86e9d9c24ebd1271e4c9c3e) |
| In the Linux kernel, the following vulnerability has been resolved:
drm/hisilicon/hibmc: fix irq_request()'s irq name variable is local
The local variable is passed in request_irq (), and there will be use
after free problem, which will make request_irq failed. Using the global
irq name instead of it to fix. |
| A use-after-free vulnerability occurs during transaction processing in the editor during design mode interactions. This results in a potentially exploitable crash. This vulnerability affects Thunderbird < 52.1, Firefox ESR < 45.9, Firefox ESR < 52.1, and Firefox < 53. |
| Use-after-free vulnerability in the nsIPresShell::GetPresContext function in the PresShell (aka presentation shell) implementation in Mozilla Firefox before 25.0, Firefox ESR 17.x before 17.0.10 and 24.x before 24.1, Thunderbird before 24.1, Thunderbird ESR 17.x before 17.0.10, and SeaMonkey before 2.22 allows remote attackers to execute arbitrary code or cause a denial of service (heap memory corruption and application crash) via vectors involving a CANVAS element, a mozTextStyle attribute, and an onresize event. |
| Race condition in libssl in Mozilla Network Security Services (NSS) before 3.15.4, as used in Mozilla Firefox before 27.0, Firefox ESR 24.x before 24.3, Thunderbird before 24.3, SeaMonkey before 2.24, and other products, allows remote attackers to cause a denial of service (use-after-free) or possibly have unspecified other impact via vectors involving a resumption handshake that triggers incorrect replacement of a session ticket. |
| Use-after-free vulnerability in the nsDocLoader::doStopDocumentLoad function in Mozilla Firefox before 25.0, Firefox ESR 17.x before 17.0.10 and 24.x before 24.1, Thunderbird before 24.1, Thunderbird ESR 17.x before 17.0.10, and SeaMonkey before 2.22 allows remote attackers to execute arbitrary code or cause a denial of service (heap memory corruption) via vectors involving a state-change event during an update of the offline cache. |
| Use-after-free vulnerability in DirectionalityUtils.cpp in Mozilla Firefox before 32.0, Firefox ESR 24.x before 24.8 and 31.x before 31.1, and Thunderbird 24.x before 24.8 and 31.x before 31.1 allows remote attackers to execute arbitrary code via text that is improperly handled during the interaction between directionality resolution and layout. |
| A use-after-free vulnerability occurs during certain text input selection resulting in a potentially exploitable crash. This vulnerability affects Thunderbird < 52.1, Firefox ESR < 45.9, Firefox ESR < 52.1, and Firefox < 53. |