CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
The Fintelligence Calculator plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin's 'fintelligence-calculator' shortcode in all versions up to, and including, 1.0.3 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
The AP Background plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 3.8.2. This is due to missing or incorrect nonce validation on the advParallaxBackAdminSaveSlider function. This makes it possible for unauthenticated attackers to create or modify background sliders via a forged request granted they can trick a site administrator into performing an action such as clicking on a link. |
In the Linux kernel, the following vulnerability has been resolved:
IB/mad: Don't call to function that might sleep while in atomic context
Tracepoints are not allowed to sleep, as such the following splat is
generated due to call to ib_query_pkey() in atomic context.
WARNING: CPU: 0 PID: 1888000 at kernel/trace/ring_buffer.c:2492 rb_commit+0xc1/0x220
CPU: 0 PID: 1888000 Comm: kworker/u9:0 Kdump: loaded Tainted: G OE --------- - - 4.18.0-305.3.1.el8.x86_64 #1
Hardware name: Red Hat KVM, BIOS 1.13.0-2.module_el8.3.0+555+a55c8938 04/01/2014
Workqueue: ib-comp-unb-wq ib_cq_poll_work [ib_core]
RIP: 0010:rb_commit+0xc1/0x220
RSP: 0000:ffffa8ac80f9bca0 EFLAGS: 00010202
RAX: ffff8951c7c01300 RBX: ffff8951c7c14a00 RCX: 0000000000000246
RDX: ffff8951c707c000 RSI: ffff8951c707c57c RDI: ffff8951c7c14a00
RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000
R10: ffff8951c7c01300 R11: 0000000000000001 R12: 0000000000000246
R13: 0000000000000000 R14: ffffffff964c70c0 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff8951fbc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f20e8f39010 CR3: 000000002ca10005 CR4: 0000000000170ef0
Call Trace:
ring_buffer_unlock_commit+0x1d/0xa0
trace_buffer_unlock_commit_regs+0x3b/0x1b0
trace_event_buffer_commit+0x67/0x1d0
trace_event_raw_event_ib_mad_recv_done_handler+0x11c/0x160 [ib_core]
ib_mad_recv_done+0x48b/0xc10 [ib_core]
? trace_event_raw_event_cq_poll+0x6f/0xb0 [ib_core]
__ib_process_cq+0x91/0x1c0 [ib_core]
ib_cq_poll_work+0x26/0x80 [ib_core]
process_one_work+0x1a7/0x360
? create_worker+0x1a0/0x1a0
worker_thread+0x30/0x390
? create_worker+0x1a0/0x1a0
kthread+0x116/0x130
? kthread_flush_work_fn+0x10/0x10
ret_from_fork+0x35/0x40
---[ end trace 78ba8509d3830a16 ]--- |
In the Linux kernel, the following vulnerability has been resolved:
macintosh: fix possible memory leak in macio_add_one_device()
Afer commit 1fa5ae857bb1 ("driver core: get rid of struct device's
bus_id string array"), the name of device is allocated dynamically. It
needs to be freed when of_device_register() fails. Call put_device() to
give up the reference that's taken in device_initialize(), so that it
can be freed in kobject_cleanup() when the refcount hits 0.
macio device is freed in macio_release_dev(), so the kfree() can be
removed. |
In the Linux kernel, the following vulnerability has been resolved:
ntb_netdev: Use dev_kfree_skb_any() in interrupt context
TX/RX callback handlers (ntb_netdev_tx_handler(),
ntb_netdev_rx_handler()) can be called in interrupt
context via the DMA framework when the respective
DMA operations have completed. As such, any calls
by these routines to free skb's, should use the
interrupt context safe dev_kfree_skb_any() function.
Previously, these callback handlers would call the
interrupt unsafe version of dev_kfree_skb(). This has
not presented an issue on Intel IOAT DMA engines as
that driver utilizes tasklets rather than a hard
interrupt handler, like the AMD PTDMA DMA driver.
On AMD systems, a kernel WARNING message is
encountered, which is being issued from
skb_release_head_state() due to in_hardirq()
being true.
Besides the user visible WARNING from the kernel,
the other symptom of this bug was that TCP/IP performance
across the ntb_netdev interface was very poor, i.e.
approximately an order of magnitude below what was
expected. With the repair to use dev_kfree_skb_any(),
kernel WARNINGs from skb_release_head_state() ceased
and TCP/IP performance, as measured by iperf, was on
par with expected results, approximately 20 Gb/s on
AMD Milan based server. Note that this performance
is comparable with Intel based servers. |
In the Linux kernel, the following vulnerability has been resolved:
rtc: class: Fix potential memleak in devm_rtc_allocate_device()
devm_rtc_allocate_device() will alloc a rtc_device first, and then run
dev_set_name(). If dev_set_name() failed, the rtc_device will memleak.
Move devm_add_action_or_reset() in front of dev_set_name() to prevent
memleak.
unreferenced object 0xffff888110a53000 (size 2048):
comm "python3", pid 470, jiffies 4296078308 (age 58.882s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 08 30 a5 10 81 88 ff ff .........0......
08 30 a5 10 81 88 ff ff 00 00 00 00 00 00 00 00 .0..............
backtrace:
[<000000004aac0364>] kmalloc_trace+0x21/0x110
[<000000000ff02202>] devm_rtc_allocate_device+0xd4/0x400
[<000000001bdf5639>] devm_rtc_device_register+0x1a/0x80
[<00000000351bf81c>] rx4581_probe+0xdd/0x110 [rtc_rx4581]
[<00000000f0eba0ae>] spi_probe+0xde/0x130
[<00000000bff89ee8>] really_probe+0x175/0x3f0
[<00000000128e8d84>] __driver_probe_device+0xe6/0x170
[<00000000ee5bf913>] device_driver_attach+0x32/0x80
[<00000000f3f28f92>] bind_store+0x10b/0x1a0
[<000000009ff812d8>] drv_attr_store+0x49/0x70
[<000000008139c323>] sysfs_kf_write+0x8d/0xb0
[<00000000b6146e01>] kernfs_fop_write_iter+0x214/0x2d0
[<00000000ecbe3895>] vfs_write+0x61a/0x7d0
[<00000000aa2196ea>] ksys_write+0xc8/0x190
[<0000000046a600f5>] do_syscall_64+0x37/0x90
[<00000000541a336f>] entry_SYSCALL_64_after_hwframe+0x63/0xcd |
In the Linux kernel, the following vulnerability has been resolved:
cxl: fix possible null-ptr-deref in cxl_guest_init_afu|adapter()
If device_register() fails in cxl_register_afu|adapter(), the device
is not added, device_unregister() can not be called in the error path,
otherwise it will cause a null-ptr-deref because of removing not added
device.
As comment of device_register() says, it should use put_device() to give
up the reference in the error path. So split device_unregister() into
device_del() and put_device(), then goes to put dev when register fails. |
In the Linux kernel, the following vulnerability has been resolved:
iommu/vt-d: Clean up si_domain in the init_dmars() error path
A splat from kmem_cache_destroy() was seen with a kernel prior to
commit ee2653bbe89d ("iommu/vt-d: Remove domain and devinfo mempool")
when there was a failure in init_dmars(), because the iommu_domain
cache still had objects. While the mempool code is now gone, there
still is a leak of the si_domain memory if init_dmars() fails. So
clean up si_domain in the init_dmars() error path. |
In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: ti: Fix return type of netcp_ndo_start_xmit()
With clang's kernel control flow integrity (kCFI, CONFIG_CFI_CLANG),
indirect call targets are validated against the expected function
pointer prototype to make sure the call target is valid to help mitigate
ROP attacks. If they are not identical, there is a failure at run time,
which manifests as either a kernel panic or thread getting killed. A
proposed warning in clang aims to catch these at compile time, which
reveals:
drivers/net/ethernet/ti/netcp_core.c:1944:21: error: incompatible function pointer types initializing 'netdev_tx_t (*)(struct sk_buff *, struct net_device *)' (aka 'enum netdev_tx (*)(struct sk_buff *, struct net_device *)') with an expression of type 'int (struct sk_buff *, struct net_device *)' [-Werror,-Wincompatible-function-pointer-types-strict]
.ndo_start_xmit = netcp_ndo_start_xmit,
^~~~~~~~~~~~~~~~~~~~
1 error generated.
->ndo_start_xmit() in 'struct net_device_ops' expects a return type of
'netdev_tx_t', not 'int'. Adjust the return type of
netcp_ndo_start_xmit() to match the prototype's to resolve the warning
and CFI failure. |
In the Linux kernel, the following vulnerability has been resolved:
NFSD: Protect against send buffer overflow in NFSv3 READDIR
Since before the git era, NFSD has conserved the number of pages
held by each nfsd thread by combining the RPC receive and send
buffers into a single array of pages. This works because there are
no cases where an operation needs a large RPC Call message and a
large RPC Reply message at the same time.
Once an RPC Call has been received, svc_process() updates
svc_rqst::rq_res to describe the part of rq_pages that can be
used for constructing the Reply. This means that the send buffer
(rq_res) shrinks when the received RPC record containing the RPC
Call is large.
A client can force this shrinkage on TCP by sending a correctly-
formed RPC Call header contained in an RPC record that is
excessively large. The full maximum payload size cannot be
constructed in that case.
Thanks to Aleksi Illikainen and Kari Hulkko for uncovering this
issue. |
The PayPal Forms plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 1.0.3. This is due to missing nonce validation on the form creation and management functions. This makes it possible for unauthenticated attackers to create new PayPal forms and modify PayPal payment settings via a forged request granted they can trick a site administrator into performing an action such as clicking on a link. |
An uninitialized variable in the HTTP CGI request arguments processing component of Vigor Routers running DrayOS may allow an attacker the ability to perform RCE on the appliance through memory corruption. |
Use of Hard-coded Credentials vulnerability in Logo Software Inc. TigerWings ERP allows Read Sensitive Constants Within an Executable.This issue affects TigerWings ERP: from 01.01.00 before 3.03.00. |
When the module renders a Svg file that contains a <pattern> element, it might end up rendering it recursively leading to stack overflow DoS |
The module will parse a <pattern> node which is not a child of a structural node. The node will be deleted after creation but might be accessed later leading to a use after free. |
The Ultimate Viral Quiz plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 1.0. This is due to missing or incorrect nonce validation on thesave_options() function. This makes it possible for unauthenticated attackers to update the plugin's settings via a forged request granted they can trick a site administrator into performing an action such as clicking on a link. |
In the Linux kernel, the following vulnerability has been resolved:
xhci: Remove device endpoints from bandwidth list when freeing the device
Endpoints are normally deleted from the bandwidth list when they are
dropped, before the virt device is freed.
If xHC host is dying or being removed then the endpoints aren't dropped
cleanly due to functions returning early to avoid interacting with a
non-accessible host controller.
So check and delete endpoints that are still on the bandwidth list when
freeing the virt device.
Solves a list_del corruption kernel crash when unbinding xhci-pci,
caused by xhci_mem_cleanup() when it later tried to delete already freed
endpoints from the bandwidth list.
This only affects hosts that use software bandwidth checking, which
currenty is only the xHC in intel Panther Point PCH (Ivy Bridge) |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/core: Make sure "ib_port" is valid when access sysfs node
The "ib_port" structure must be set before adding the sysfs kobject,
and reset after removing it, otherwise it may crash when accessing
the sysfs node:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000050
Mem abort info:
ESR = 0x96000006
Exception class = DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
Data abort info:
ISV = 0, ISS = 0x00000006
CM = 0, WnR = 0
user pgtable: 4k pages, 48-bit VAs, pgdp = 00000000e85f5ba5
[0000000000000050] pgd=0000000848fd9003, pud=000000085b387003, pmd=0000000000000000
Internal error: Oops: 96000006 [#2] PREEMPT SMP
Modules linked in: ib_umad(O) mlx5_ib(O) nfnetlink_cttimeout(E) nfnetlink(E) act_gact(E) cls_flower(E) sch_ingress(E) openvswitch(E) nsh(E) nf_nat_ipv6(E) nf_nat_ipv4(E) nf_conncount(E) nf_nat(E) nf_conntrack(E) nf_defrag_ipv6(E) nf_defrag_ipv4(E) mst_pciconf(O) ipmi_devintf(E) ipmi_msghandler(E) ipmb_dev_int(OE) mlx5_core(O) mlxfw(O) mlxdevm(O) auxiliary(O) ib_uverbs(O) ib_core(O) mlx_compat(O) psample(E) sbsa_gwdt(E) uio_pdrv_genirq(E) uio(E) mlxbf_pmc(OE) mlxbf_gige(OE) mlxbf_tmfifo(OE) gpio_mlxbf2(OE) pwr_mlxbf(OE) mlx_trio(OE) i2c_mlxbf(OE) mlx_bootctl(OE) bluefield_edac(OE) knem(O) ip_tables(E) ipv6(E) crc_ccitt(E) [last unloaded: mst_pci]
Process grep (pid: 3372, stack limit = 0x0000000022055c92)
CPU: 5 PID: 3372 Comm: grep Tainted: G D OE 4.19.161-mlnx.47.gadcd9e3 #1
Hardware name: https://www.mellanox.com BlueField SoC/BlueField SoC, BIOS BlueField:3.9.2-15-ga2403ab Sep 8 2022
pstate: 40000005 (nZcv daif -PAN -UAO)
pc : hw_stat_port_show+0x4c/0x80 [ib_core]
lr : port_attr_show+0x40/0x58 [ib_core]
sp : ffff000029f43b50
x29: ffff000029f43b50 x28: 0000000019375000
x27: ffff8007b821a540 x26: ffff000029f43e30
x25: 0000000000008000 x24: ffff000000eaa958
x23: 0000000000001000 x22: ffff8007a4ce3000
x21: ffff8007baff8000 x20: ffff8007b9066ac0
x19: ffff8007bae97578 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000
x15: 0000000000000000 x14: 0000000000000000
x13: 0000000000000000 x12: 0000000000000000
x11: 0000000000000000 x10: 0000000000000000
x9 : 0000000000000000 x8 : ffff8007a4ce4000
x7 : 0000000000000000 x6 : 000000000000003f
x5 : ffff000000e6a280 x4 : ffff8007a4ce3000
x3 : 0000000000000000 x2 : aaaaaaaaaaaaaaab
x1 : ffff8007b9066a10 x0 : ffff8007baff8000
Call trace:
hw_stat_port_show+0x4c/0x80 [ib_core]
port_attr_show+0x40/0x58 [ib_core]
sysfs_kf_seq_show+0x8c/0x150
kernfs_seq_show+0x44/0x50
seq_read+0x1b4/0x45c
kernfs_fop_read+0x148/0x1d8
__vfs_read+0x58/0x180
vfs_read+0x94/0x154
ksys_read+0x68/0xd8
__arm64_sys_read+0x28/0x34
el0_svc_common+0x88/0x18c
el0_svc_handler+0x78/0x94
el0_svc+0x8/0xe8
Code: f2955562 aa1603e4 aa1503e0 f9405683 (f9402861) |
In the Linux kernel, the following vulnerability has been resolved:
drm/amd: fix potential memory leak
This patch fix potential memory leak (clk_src) when function run
into last return NULL.
s/free/kfree/ - Alex |
In the Linux kernel, the following vulnerability has been resolved:
memory: pl353-smc: Fix refcount leak bug in pl353_smc_probe()
The break of for_each_available_child_of_node() needs a
corresponding of_node_put() when the reference 'child' is not
used anymore. Here we do not need to call of_node_put() in
fail path as '!match' means no break.
While the of_platform_device_create() will created a new
reference by 'child' but it has considered the refcounting. |